首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Phosphorus loading tolerances of small lakes are analyzed by means of a statistical model of lake eutrophication based upon the work of Vollenweider and Dillon. Using a sample of 195 midwestern and eastern U. S. lakes, it was found that Vollenweider and Dillon's method of predicting the trophic status of relatively deep, slow-flushing lakes can be applied to shallower lakes with much shorter retention times. The statistical model used to replicate the results of Vollenweider and Dillon is stated in detail, for convenience of application to small lake water quality management problems. The model extends the Vollenweider and Dillon results by associating each alternative phosphorous loading with a probability that a given lake can achieve or maintain noneutrophis status. It is applicable to lakes for which only minimal data are available. The major policy conclusion is that the highly variable tolerance for phosphorus loading must be considered in legislating efficient effluent limitations. The paper concludes with a comparison to a recent contribution employing a similar approach.  相似文献   

2.
A general conceptual watershed-lake model of the complex interactions among climatic conditions, watershed location and characteristics, lake morphology, and fish predation was used to evaluate limnological characteristics of high mountain lakes. Our main hypothesis was that decreasing elevation in mountainous terrain corresponds to an increase in diversity of watershed size and lake area, depth, temperature, nutrient concentrations, and productivity. A second hypothesis was that watershed location and aspect relative to climatic gradients within mountainous terrain influences the limnological characteristics of the lakes. We evaluated these hypotheses by examining watershed location, aspect and size; lake morphology; water quality; and phytoplankton and zooplankton community characteristics among high mountain forest and subalpine lakes in Mount Rainier National Park. Although many of the comparisons between all forest and subalpine lakes were statistically insignificant, the results revealed trends that were consistent with our hypotheses. The forest lake group included more lakes with larger watersheds, larger surface areas, greater depths, higher concentrations of nutrients, and higher algal biovolumes than did the group of subalpine lakes. Deep lakes, which were mostly of the forest lake type, exhibited thermal stratification and relatively high values of some of the water-quality variables near the lake bottoms. However, the highest near-surface water temperatures and phytoplankton densities and the taxonomic structures of the phytoplankton and zooplankton assemblages were more closely related to geographical location, which corresponded to a west-east climate gradient in the park, than to lake type. Some crustacean and rotifer taxa, however, were limited in distribution by lake type. Fish predation did not appear to play an important role in the structure of the crustacean zooplankton communities at the genus level with the exception of Mowich Lake, where crustacean taxa were absent from the zooplankton community. This was the only lake inhabited by a true zooplanktivourous species of fish.  相似文献   

3.
A Proposed Aquatic Plant Community Biotic Index for Wisconsin Lakes   总被引:2,自引:0,他引:2  
The Aquatic Macrophyte Community Index (AMCI) is a multipurpose tool developed to assess the biological quality of aquatic plant communities in lakes. It can be used to specifically analyze aquatic plant communities or as part of a multimetric system to assess overall lake quality for regulatory, planning, management, educational, or research purposes. The components of the index are maximum depth of plant growth; percentage of the littoral zone vegetated; Simpson's diversity index; the relative frequencies of submersed, sensitive, and exotic species; and taxa number. Each parameter was scaled based on data distributions from a statewide database, and scaled values were totaled for the AMCI value. AMCI values were grouped and tested by ecoregion and lake type (natural lakes and impoundments) to define quality on a regional basis. This analysis suggested that aquatic plant communities are divided into four groups: (1) Northern Lakes and Forests lakes and impoundments, (2) North-Central Hardwood Forests lakes and impoundments, (3) Southeastern Wisconsin Till Plains lakes, and (4) Southeastern Wisconsin Till Plains impoundments, Driftless Area Lakes, and Mississippi River Backwater lakes. AMCI values decline from group 1 to group 4 and reflect general water quality and human use trends in Wisconsin. The upper quartile of AMCI values in any region are the highest quality or benchmark plant communities. The interquartile range consists of normally impacted communities for the region and the lower quartile contains severely impacted or degraded plant communities. When AMCI values were applied to case studies, the values reflected known impacts to the lakes. However, quality criteria cannot be used uncritically, especially in lakes that initially have low nutrient levels.  相似文献   

4.
Assessment of lake impairment status and identification of threats’ type and source is essential for protection of intact, enhancement of modified, and restoration of impaired lakes. For regions in which large numbers of lakes occur, such assessment has usually been done for only small fractions of lakes due to resource and time limitation. This study describes a process for assessing lake impairment status and identifying which human disturbances have the greatest impact on each lake for all lakes that are 2 ha or larger in the state of Michigan using readily available, georeferenced natural and human disturbance databases. In-lake indicators of impairment are available for only a small subset of lakes in Michigan. Using statistical relationships between the in-lake indicators and landscape natural and human-induced measures from the subset lakes, we assessed the likely human impairment condition of lakes for which in-lake indicator data were unavailable using landscape natural and human disturbance measures. Approximately 92% of lakes in Michigan were identified as being least to marginally impacted and about 8% were moderately to heavily impacted by landscape human disturbances. Among lakes that were heavily impacted, more inline lakes (92%) were impacted by human disturbances than disconnected (6%) or headwater lakes (2%). More small lakes were impacted than medium to large lakes. For inline lakes, 90% of the heavily impacted lakes were less than 40 ha, 10% were between 40 and 405 ha, and 1% was greater than 405 ha. For disconnected and headwater lakes, all of the heavily impacted lakes were less than 40 ha. Among the anthropogenic disturbances that contributed the most to lake disturbance index scores, nutrient yields and farm animal density affected the highest number of lakes, agricultural land use affected a moderate number of lakes, and point-source pollution and road measures affected least number of lakes. Our process for assessing lake condition represents a significant advantage over other routinely used methods. It permits the evaluation of lake condition across large regions and yields an overall disturbance index that is a physicochemical and biological indicator weighted sum of multiple disturbance factors. The robustness of our approach can be improved with increased availability of high-resolution disturbance datasets.  相似文献   

5.
Abstract: Industrial activity in Canada’s north is increasing, placing demands on the use of water from lakes to build ice roads. Winter water withdrawal from these lakes has the potential to impact overwintering fish. Removal of water from small lakes can decrease oxygen and habitat available to fish. To address this issue, a protocol has been developed by the Department of Fisheries and Oceans outlining water withdrawal thresholds. Bathymetric surveys are the traditional method to determine lake depth, but are costly given the remoteness of northern lakes. This paper investigates the use of satellite C‐band synthetic aperture radar (SAR) remote sensing technology as a potential alternative or complement to traditional survey methods. Previous research has shown that a SAR can detect the transition from grounded to floating ice on lakes, or if a lake is completely frozen. Grounded ice has a dark signature while floating ice appears very bright in contrast. Similar results were observed for the datasets acquired in the study area. This suggests that lakes that freeze completely to the bottom can be identified using SAR. Such water bodies would not be viable fish overwintering habitat and can therefore be used as water sources without thresholds necessary. However, attempts to accurately calculate the depth of the ice at the grounded‐floating ice boundary using bathymetric profiles acquired in the summer and lake ice thickness measurements from a reference lake near Inuvik proved to be unreliable.  相似文献   

6.
A map of summer total phosphorus in lakes has been compiled for Minnesota, Wisconsin, and Michigan to clarify regional patterns in attainable lake trophic state. Total phosphorus was used as a measure of lake trophic state because: (1) phosphorus plays a central role in controlling the overall fertility of most lakes, (2) total phosphorus values are available for a great number of lakes, and (3) phosphorus is measured in a consistent manner. The maps were compiled using patterns of total phosphorus data and observed associations between these data and geographic characteristics including physiography, land use, geology, and soils. Regions depicted on the map represent areas of similarity in phosphorus concentrations in lakes, or similarity in the mosaic of values, as compared to adjacent areas. Within each region, differences in total phosphorus can be compared to natural and anthropogenic factors to determine the types of lakes representative of each region, the factors associated with differences in quality, and the realistically attainable phosphorus levels for each type of lake.  相似文献   

7.
Implementation of the EU Water Framework Directive will call for new lake monitoring and management strategies. Therefore, different methods need to be tested in order to achieve reliable assessment of lake background conditions and water quality. Sediment-based techniques provide one such tool for lake management. In this work, 10 lakes, presumed to be naturally eutrophic, were investigated with a paleolimnological short core study. The aim of the study was to examine the composition of the diatom assemblages in their natural state, estimate their change over time and assess the background nutrient levels. One sediment profile from each lake was divided into six sub-samples that were analyzed for diatoms (60 samples). Diatom-based inference models were applied to reconstruct the past total phosphorus concentration and assess the eutrophication. The results indicated that all the lakes studied had already been nutrient-rich before the impact of modern agriculture. However, diatom assemblages have changed remarkably over time and total phosphorus concentrations have generally increased, so at present only two of the study lakes are close to their natural status. This suggests that naturally eutrophic lakes will probably require management actions to fulfill the new directive requirements in the future.  相似文献   

8.
Abstract: Arctic lakes are significant emitters of methane (CH4), a potent greenhouse gas, to the atmosphere; yet no rigorous quantification of the magnitude and variability of pan‐Arctic lake emissions exists. In this study, we demonstrate the potential for a new method using synthetic aperture radar (SAR) imagery to detect methane bubbles in lake ice to scale up whole‐lake measurements of CH4 ebullition (bubbling) to regional scales. We estimated ebullition from lakes, which is often the dominant mode of lake emissions, by mapping the distribution of bubble clusters frozen in early winter ice across surfaces of seven tundra lakes and one boreal forest lake in Alaska. Applying previously measured ebullition rates associated with four distinct classes of bubble clusters found in lake ice, we estimated whole‐lake emissions from individual lakes. The percent surface area of lake ice covered with bubbles (R2 = 0.68) and CH4 ebullition rates from lakes (R2 = 0.59) and were correlated with radar return values from RADARSAT‐1 Standard Beam mode 3 for the tundra lakes, suggesting that with appropriate scaling and consideration for variability in lake‐ice conditions, this technique has the potential to be used for estimating broader‐scale regional and pan‐Arctic lake methane emissions.  相似文献   

9.
Regionalization frameworks cluster geographic data to create contiguous regions of similar climate, geology and hydrology by delineating land into discrete regions, such as ecoregions or watersheds, often at several spatial scales. Although most regionalization schemes were not originally designed for aquatic ecosystem classification or management, they are often used for such purposes, with surprisingly few explicit tests of the relative ability of different regionalization frameworks to group lakes for water quality monitoring and assessment. We examined which of 11 different lake grouping schemes at two spatial scales best captures the maximum amount of variation in water quality among regions for total nutrients, water clarity, chlorophyll, overall trophic state, and alkalinity in 479 lakes in Michigan (USA). We conducted analyses on two data sets: one that included all lakes and one that included only minimally disturbed lakes. Using hierarchical linear models that partitioned total variance into within-region and among-region components, we found that ecological drainage units and 8-digit hydrologic units most consistently captured among-region heterogeneity at their respective spatial scales using all lakes (variation among lake groups = 3% to 50% and 12% to 52%, respectively). However, regionalization schemes capture less among-region variance for minimally disturbed lakes. Diagnostics of spatial autocorrelation provided insight into the relative performance of regionalization frameworks but also demonstrated that region size is only partly responsible for capturing variation among lakes. These results suggest that regionalization schemes can provide useful frameworks for lake water quality assessment and monitoring but that we must identify the appropriate spatial scale for the questions being asked, the type of management applied, and the metrics being assessed.  相似文献   

10.
The Jianghan Plain and the Dongting lake area, located in the middle reaches of the Yangtze River are famous for their abundant freshwater lakes. The lakes have undergone changes in size and number over thousands of years due to natural causes and human activities. The 20th century particularly, witnessed dramatic changes in the freshwater resources of this region. This paper traces and analyzes lake evolution in the middle reaches of the Yangtze River over the past century. Lakes greater than 0.1 km(2) in size are mapped using Geographic Information System. Data is acquired and integrated from drainage network maps, relief maps, historical maps and remotely sensed images for different time periods. The results indicate that while there has been little change in the number of lakes over the past century, the lake area has experienced a dramatic decrease of 58.06%. The paper also examines the natural processes and human activities that may have contributed to the decrease in lake area. The results show that the decrease in total lake area appears to coincide with periods of rapid land reclamation in the middle reaches of the Yangtze River. Moreover, uncontrolled land reclamation activities can create an increase in sediment deposition in lakes thereby further reducing the lake size. Reduction of the lake area directly affects flood-control and has a negative ecological impact on the environment and on human life and property.  相似文献   

11.
ABSTRACT: Data from a recent survey conducted by the Adirondack Lake Survey Corporation were used to evaluate the influence of lake surface area on the acid-base status of lakes in Adirondack State Park, New York. Acid neutralizing capacity (ANC) in the small lakes (< 4 ha) occurred more frequently at extreme values (> 200, < 0 μeq L?1), whereas larger lakes tended to be intermediate in ANC. Consequently, acidic (ANC ≤ 0) and low-pH lakes were typically small. The small lakes also exhibited lower Ca2+ concentration and higher dissolved organic carbon than did larger lakes. Lakes ≥ 4 ha were only half as likely to be acidic as were lakes ≥ 1 ha in area. These data illustrate the dependence of lake chemistry on lake surface area and the importance of the lower lake area limit for a statistical survey of lake water chemistry.  相似文献   

12.
ABSTRACT: This paper examines four lake environments which are paired by lake size and by trophic state, where trophic state is employed as an identifier of water quality. Two large lakes and two intermediate-sized lakes, with each pair having one oligotrophic lake and one eutrophic lake are selected for cross-sectional survey-oriented questionnaire research. This paper focuses upon one aspect of the research, namely, the perception of water quality by three user groups. The user groups examined are recreationists, cottage and homeowners, and fishermen. The groups are compared utilizing percentage response profiles and cluster level groupings. It appears from a preliminary analysis of the data that the lakes selected are viable trophic state endpoints for questionnaire analysis of respondents. Each user group surveyed does appear sensitive to select water quality parameters; where shifts in sensitivity appear within and between user groups with changes in ecological settings, as well as with factors independent of ecological settings.  相似文献   

13.
A map of summer total phosphorus in lakes was compiled recently for a three-state area of the upper Midwest for purposes of identifying regional patterns of total phosphorus in lakes and attainable lake trophic state. Spatial patterns in total phosphorus from approximately 3000 lakes were studied in conjunction with maps of geographic characteristics that tend to affect phosphorus balance in lakes to identify regions of similarity in phosphorus concentrations in lakes or similarity in the mosaic of values as compared to adjacent areas. While degrees of relative homogeneity are apparent at many scales, the map was designed at a scale that would yield regions with sufficient homogeneity to be useful for lake management throughout the area. In this study, data from 210 lakes in a 1560-mi2 area in northwestern Wisconsin, sampled by the Wisconsin Department of Natural Resources in the spring of 1988 (subsequent to the compilation of the phosphorus map), were examined to: (1) substantiate the existence of the regions depicted on the map in northwest Wisconsin, (2) determine the nature and relative precision of the regional boundaries, (3) determine the relative importance of natural and anthropogenic watershed characteristics, lake types, lake area, and lake depth in explaining within-region differences in lake phosphorus, and (4) demonstrate how the regions might be used by local lake managers.  相似文献   

14.
ABSTRACT: A simple, black-box lake model was developed for phosphorus, using nonlinear regression analysis on a data base of north temperate lakes. The uncertainty associated with the model was then combined with the parameter uncertainty and the independent variable uncertainty to provide an estimate of the confidence limits associated with a predicted value. The prediction uncertainty is often neglected, yet it is an important measure of the usefulness of a model. Prediction uncertainty reflects the modeler's confidence in the model, and it should be used by a decision maker as a weight indicating the value of the model prediction. A procedure is outlined that combined lake modeling and uncertainty analysis for use in lake quality assessment and lake management. An example is provided illustrating the use of this procedure in nutrient budget sampling design, data analysis, and the evaluation of lake management strategies for a 208 program in New Hampshire.  相似文献   

15.
为评价西南地区高尔夫球场人工湖的营养状态,并探讨影响球场湖泊富营养化的原因,2010年1月至12月,以成都麓山高尔夫球场为例,对球场的4个球道人工湖(12号球道、13号球道、14号球道和16号球道)水体的水体理化性质进行监测。结果显示:人工湖的富营养化程度呈季节性变化,其在试验期内综合营养状态已达到轻度富营养的状态。水体营养盐主要来自于球场草坪的施肥,氮、磷等营养物质随降水输入人工湖,从而引起的湖泊富营养化,尤其体现在多雨的夏季。  相似文献   

16.
Use of systems analysis techniques for setting up flow regulation rules for the Oswego River System, a canal-river system with eight lakes, was examined. Two sets of lake regulation rules were proposed: the rule curve for each lake, and the lake-use priority curves for all the lakes. The former specifies balanced allocation of the storage in lakes to conservation pools and flood control pools and, the latter determines lakes releases depending upon the type of operation, the time of the year, and systems objectives. A generalized mathematical representation of the complex, multipurpose, multilake river systems operation is described. With appropriate measures of effectiveness and details of analysis, the problem was then solved with simulation and optimization. Use of the results in assisting basin plan formulation is also discussed.  相似文献   

17.
Lakeshore development in Vilas County, northern Wisconsin (USA) is heterogeneous, ranging from lakes that are surrounded by homes and commercial establishments to lakes that have no buildings on their shorelines. Development in this recreational area has increased, and since the 1960s over half of new homes have been built on the lakeshore. We examined building density around lakes in relationship to 11 variables, including in-lake, shoreline, and social characteristics. Buildings in many parts of northern Wisconsin tend to be concentrated around shorelines; in Vilas County 61% of all medium-sized buildings (our proxy for residential development) on private land were ≤100 m of a lake. The probability of development on a lake was largely related to lake surface area, with larger, more accessible lakes showing a higher probability of development. Building density along shorelines varied with travel cost, lake surface area, presence of wetlands, and extent of public land ownership. Building density was greater on larger, more accessible lakes that were surrounded by forest (as opposed to wetlands) and public lands. Gaining a more precise understanding of human settlement patterns can help direct planning and resource protection efforts to lakes most likely to experience future development.  相似文献   

18.
Roughly 45% of the assessed lakes in the United States are impaired for one or more reasons. Eutrophication due to excess phosphorus loading is common in many impaired lakes. Various strategies are available to lake residents for addressing declining lake water quality, including septic system upgrades and establishing riparian buffers. This study examines 25 lakes to determine whether septic upgrades or riparian buffers are a more cost-effective strategy to meet a phosphorus reduction target. We find that riparian buffers are the more cost-effective strategy in every case but one. Large transaction costs associated with the negotiation and monitoring of riparian buffers, however, may be prohibiting lake residents from implementing the most cost-effective strategy. An erratum to this article is available at .  相似文献   

19.
ABSTRACT: Recovery of eutrophic lakes after nutrient diversion may be delayed if the lake experiences significant internal phosphorus (p) loading to the water column. A maximum dose of aluminum sulfate, defined herein, was applied to the anaerobic sediments of the hypolimnia of two dimictic Ohio lakes following septic tank diversion, with the objective of attaining long term control of the release of phosphorus to the water column from these sediments. The results were compared to a similar, downstream, untreated lake. Total phosphorus concentration declined sharply after treatment and has remained so through 1980 for both lakes, a period of 5 and 6 years of control, respectively. Internal P loading from anaerobic, hypolimnetic sediments was partially controlled by the treatment but there are other important sources, perhaps in the littoral zone, in these lakes. Algal biomass is Smaller and water transparency has increased. Both lakes became mesotrophic after treatment, as described by the Carlson (1977) trophic state index, and remain in that improved condition to date. No deleterious side effects were observed, although one lake experienced a significant decrease in diversity of planktonic microcrustacea and a lakeward extension of the macrophyte community. This method appears to be an effective and lasting means of accelerating the recovery of a eutrophic lake following nutrient diversion.  相似文献   

20.
ABSTRACT: The Hallett Quarry gravel pit lakes are an active sand and gravel extraction operation located 0.4 km north of the City of Ames, Iowa. During periods of drought, these lakes serve as a supplemental water supply for Ames. A modified version of the Vollenweider input-output model was used to predict future water quality under various watershed land use, drainage, and lake configurations. The dominant factor controlling the future water quality of the lakes was found to be the nutrient input. It is recommended that a management plan to protect the future water quality should be oriented towards reducing the sources of phosphorus to the lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号