首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
针对城镇污水中碳源不足、C/N比低导致脱氮性能不佳的问题,建立了A2/O中试装置,通过调整系统缺氧/好氧分区比例及好氧区溶解氧水平,探究亚硝氮积累率及氮类污染物去除情况.结果表明,在DO为2. 0~2. 5 mg·L~(-1)条件下,改变缺氧/好氧分区比例对系统的影响较小,难以实现短程硝化;当控制DO为0. 5~0. 8 mg·L~(-1)、V_缺∶V_好=1∶1时为系统最优工况,此时系统好氧区末端亚硝氮积累率稳定在62%以上,出水总氮降至9. 0 mg·L~(-1),能够实现深度脱氮的目标.分析硝化菌表观活性可知,最优工况下SAOR与SNOR分别(以N/VSS计)为0. 14 g·(g·d)~(-1)和0. 04 g·(g·d)~(-1),二者差值较试验其他阶段更为明显,即NOB活性受到更高程度抑制是提高亚硝氮积累率的直接原因. Illumina MiSeq测序结果表明,该阶段NOB数量显著低于其他阶段.通过间歇OUR法分析缺氧区进出口碳源组成情况,结果表明最优工况下系统通过短程硝化节约碳源27. 3%,可生化性COD在缺氧区消耗63. 6%,远高于其他阶段,是低C/N比城市污水实现深度脱氮的碳源有力保障.  相似文献   

2.
为了选择理想的农业废弃物作为优质碳源,同时作为生物膜载体应用于可渗透反应墙(PRB),通过反硝化作用去除地下水中的硝酸盐.选择小麦秸秆、玉米秸秆、稻秆、大豆秸秆、玉米棒、稻壳、甘蔗渣、杨树枝、木屑、芦苇共10种农业废弃物进行元素分析实验、浸溶实验和长效浸出实验研究.元素分析实验结果显示,10种农业废弃物的C、N、H元素含量分别为38%~48%、5%~7%、0.5%~2.5%.短效浸出实验表明,甘蔗浸出液的总有机碳(TOC)浓度最高,均值可达38.66 mg·g~(-1),大豆秸秆、水稻秸秆、玉米秸秆、稻壳、杨树枝和小麦秸秆为8.04~15.30 mg·g~(-1),其他均值约为2.36~6.33 mg·g~(-1).但是,大部分农业废弃物均释放一定量的含氮物质.其中,硝酸盐及亚硝酸盐释放量均低于0.05 mg·g~(-1),氨氮释放量低于0.30 mg·g~(-1),凯氏氮除木屑、玉米棒、杨树枝释放量较低,其余均高于0.80 mg·g~(-1),最高可达1.65 mg·g~(-1).同时,秸秆类材料浸出液具有一定的色度,其中稻杆的色度最高,其值为1025.选择浸出液TOC浓度较高的甘蔗渣、玉米秸秆、稻壳、小麦秸秆及凯氏氮浓度较低的玉米棒和木屑作为理想碳源材料,进行长效浸出实验.结果表明,6种材料的TOC能迅速达到高位平衡状态,且溶出速率稳定,浸出液的高效液相色谱(HPLC)和气-质谱联用仪(GC/MS)分析表明,其主要成分为有机酸、糖类、含氮有机物和酯类等物质.其中,有机酸主要为甲酸、乙酸、草酸、富马酸等小分子有机酸、糖类主要为纤维二糖、葡萄糖、果糖和木糖.脱氮效能实验表明,6种农业废弃物硝酸盐去除率均达到80%以上,脱氮速率均达到1.00~2.00 mg·cm~(-3)·d~(-1)(以N计).综上,这6种材料均可作为地下水硝酸盐污染原位修复的理想碳源填充材料.  相似文献   

3.
以低C/N城市污水为处理对象,采用延时厌氧(180min)/好氧运行的SBR反应器,通过调控曝气量[单位体积的反应器在单位时间内通过的气体的体积,单位为L·(min·L)~(-1).由0. 125 L·(min·L)~(-1)逐渐降低至0. 025 L·(min·L)~(-1)]和好氧时间(由3 h逐渐延长至6 h),考察了SPNDPR系统的深度脱氮除磷性能.结果表明,当曝气量为0. 025 L·(min·L)~(-1)、好氧时间为6 h时,SPNDPR系统出水NH_4~+-N、NO_2~--N、NO_3~--N和PO_4~(3-)-P浓度分别为0、8. 62、0. 06和0. 03 mg·L~(-1);出水TN浓度约为9. 22 mg·L~(-1),TN去除率高达87. 08%.当曝气量分别由0. 125 L·(min·L)~(-1)降至0. 100 L·(min·L)~(-1)和由0. 100L·(min·L)~(-1)降至0. 075 L·(min·L)~(-1)时,系统硝化速率均能恢复并稳定维持在0. 16 mg·(L·min)~(-1)左右.但曝气量继续降至0. 050 L·(min·L)~(-1)和0. 025 L·(min·L)~(-1)后,硝化速率分别降至0. 09 mg·(L·min)~(-1)和0. 06 mg·(L·min)~(-1)左右.随着曝气量的降低[由0. 125 L·(min·L)~(-1)依次降至0. 100、0. 075、0. 050、0. 025 L·(min·L)~(-1)]和好氧时间的延长(由3 h延长至6h),SPND脱氮性能逐渐增强,SND率由19. 57%升高至72. 11%,TN去除率逐渐升高(由62. 82%升高至87. 08%).降低曝气量和延长好氧时间后的SPNDPR系统,强化了厌氧段内碳源贮存与好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化等过程的进行,实现了低C/N城市污水的深度脱氮除磷.  相似文献   

4.
吕永涛  刘婷  曾玉莲  孙婷  张瑶  王磊 《环境科学》2017,38(5):1991-1996
为减少生物短程反硝化对外碳源的依赖,研究了无机环境下Fe(0)-活性炭强化短程反硝化的脱氮效果,并探究了不同铁碳比及初始pH值对系统脱氮效果及N+2O释放的影响.结果表明Fe(0)-活性炭可强化生物短程反硝化,将亚硝氮去除率由7.4%提高到31.1%.当m(铁)∶m(碳)由2∶1降至1∶1和1∶2时,反硝化速率与亚硝氮去除率均呈现先升后降的趋势,m(铁)∶m(碳)为1∶1时达到最大,分别为5.58 mg·(g·h)~(-1)与41.1%,且此时N+2O的释放量较小,为0.10 mg.当pH值由6.0升至9.0的过程中,反硝化速率由7.39 mg·(g·h)~(-1)下降至5.96 mg·(g·h)~(-1),N+2O的释放量由0.19 mg下降至0.12 mg.以上结果表明,在m(铁)∶m(碳)为1∶1和pH为弱酸性的条件下,Fe(0)-活性炭能强化短程反硝化获得较好的脱氮效果,但低pH值会增加N+2O的释放量.  相似文献   

5.
姜应和  李瑶  张莹  张翔凌 《环境科学》2017,38(5):1898-1903
为了将污水厂尾水作为再生水进行利用,常常需要对尾水进行深度脱氮,针对尾水的水质特征,在深度脱氮时常常需投加碳源.试验采用树皮作为填料,兼作脱氮的缓释碳源,进行树皮填料人工湿地深度脱氮模型试验,研究进水NO_3~--N负荷对反硝化和树皮释放碳源的影响.结果表明,树皮填料人工湿地可稳定脱氮;反硝化速率遵循Monod关系式,随进水NO_3~--N负荷增大而递增,饱和常数KS=19.10 mg·L~(-1);硝氮去除率随进水NO_3~--N负荷增大而减小;在树皮填料人工湿地运行早期,树皮释碳总量、树皮释碳速率随进水NO_3~--N负荷增大而递增,与进水NO_3~--N均呈线性正相关;树皮静态释碳速率为0.2 mg·(g·d)-1,与腐朽木等中空松散的植物碳源相比,碳源缓释性能较好,释碳周期较长,是良好的缓释碳源.  相似文献   

6.
李惠娟  彭党聪  陈国燕  王博  姚倩  卓杨 《环境科学》2017,38(5):1997-2005
为研究如何控制部分亚硝化系统的稳定性,在高氨氮负荷[1 kg·(m~3·d)~(-1)]和不同的双重抑制策略下启动并连续运行两个序批式反应器(sequencing batch reactors,SBRs).结果表明在温度35℃±1℃,进水氨氮负荷为1 kg·(m~3·d)~(-1)的条件下,FA和DO的双重抑制和FNA和DO的双重抑制均可成功实现高氨氮废水稳定的部分亚硝化,出水NO-2-N/NH+4-N接近1,NO-3-N浓度接近于零,满足ANAMMOX反应的进水基质要求.R1反应器在DO和FA的控制策略下,亚硝氮氧化速率从28.16mg·(g·h)~(-1)减小到0.3 mg·(g·h)~(-1)(以NO-2-N计,下同),而氨氧化速率减小43.60%,最终稳定在20 mg·(g·h)~(-1)(以NH+4-N计,下同)左右.R2反应器在DO和FNA的控制策略下,亚硝氮氧化速率从12.37 mg·(g·h)~(-1)降至0.02 mg·(g·h)~(-1),而氨氧化速率仍维持在较高水平[45 mg·(g·h)~(-1)].DO和FNA双重抑制的系统与DO和高FA双重抑制的系统相比,具有富集时间短,AOB活性高,运行稳定性强等优点,更适用于启动部分亚硝化系统及维持系统稳定性.  相似文献   

7.
单级SBR生物膜中全程自养脱氮的研究   总被引:17,自引:0,他引:17       下载免费PDF全文
研究了具有全程自养脱氮作用的生物膜中无机碳源浓度、pH值、溶解氧(DO)对全程自养脱氮的影响.结果表明,当NaHCO3浓度从1.75g/L上升到2.50g/L时,反应体系中的pH值从7.6~8.0上升到8.8左右,氨氮转化率和总无机氮去除率分别急剧下降到53%和48.8%.在进水氨氮负荷为60g/(m3·d)时,最佳DO应控制在0.5~0.7mg/L,此时氨氮转化率达到90%以上.  相似文献   

8.
采用稳定运行的CANON颗粒污泥,探究不同DO浓度对CANON工艺脱氮性能的影响.结果表明,当DO小于0.46mg/L时,CANON反应器可在连续曝气方式下运行.随着DO从0mg/L升高至0.46mg/L,系统脱氮速率从0提高到50.88mg N/(L·h);当DO大于0.46mg/L时,CANON反应器必须以间歇曝气方式运行;随着DO从0.46mg/L升高至2.8mg/L,系统脱氮速率从50.88mg N/(L·h)降低为41.84mg N/(L·h).CANON反应器在DO为0.46mg/L时脱氮速率最高,达到50.88mg N/(L·h),污泥脱氮负荷为0.45kg N/(kg MLSS·d).CANON颗粒污泥大小及结构对AOB和anammox菌的活性影响较大:由于液相向颗粒污泥的传质阻力,AOB的DO半饱和常数为0.77mg/L;而对于anammox菌,当DO小于0.46mg/L时,随DO浓度上升,其活性下降缓慢;当DO大于0.46mg/L时,随DO浓度上升,其活性迅速下降;当DO超过1.0mg/L时,anammox菌接近失活.  相似文献   

9.
除磷颗粒诱导的同步短程硝化反硝化除磷颗粒污泥工艺   总被引:6,自引:6,他引:0  
李冬  刘博  王文琪  张杰 《环境科学》2020,41(2):867-875
以低C/N比生活污水为研究对象,接种成熟除磷颗粒污泥,通过联合调控好氧时间及曝气强度成功将其诱导成具有同步短程硝化反硝化除磷功能的颗粒污泥,并分析了此过程中系统脱氮除磷特性变化.结果表明,好氧段曝气强度为5L·(h·L)~(-1),在较短曝气时间下(140 min)可实现AOB的富集,但同步硝化反硝化能力难以提高;降低曝气强度为3. 5L·(h·L)~(-1),延长曝气时间(200 min),好氧段氮损增加.根据pH及DO曲线进一步优化曝气时长抑制NO_2~-向NO_3~-转化,优化后系统出水TP 0. 5 mg·L~(-1)和TN 15 mg·L~(-1),可实现氮磷的同步去除.在系统功能由单纯的除磷向同步脱氮除磷转化的过程中,释磷量下降,PAOs在内碳源储存过程中的贡献比例有所下降,但仍占主体地位(60%).批次实验表明,颗粒中可利用NO_2~-为电子受体的DPAOs占绝大部分达52. 43%,其富集减轻了系统的碳源压力,从而改善脱氮除磷效果.  相似文献   

10.
在好氧段3种溶解氧(DO)[3. 0~3. 5 mg·L~(-1)(Ⅰ阶段)、2. 0~2. 5 mg·L~(-1)(Ⅱ阶段)和1. 5~2. 0 mg·L~(-1)(Ⅲ阶段)]的A~2/O实验系统,考察了本段及后续沉淀阶段污泥的变化,以及对系统缺氧段反硝化的影响,并与DO为1. 5~2. 0 mg·L~(-1)的缺氧-好氧(A/O)系统进行了对比.结果表明,沉淀阶段污泥开始发生反硝化作用,脱氮碳源由内、外碳源同时提供;沉淀污泥优先利用外碳源进行反硝化;好氧段DO为1. 5~2. 0 mg·L~(-1)时,沉淀阶段污泥的硝酸盐还原酶活力及反硝化活性最强,此时A~2/O系统缺氧段的反硝化效果也最佳;在与A~2/O系统相同污泥负荷下的A/O系统中,好氧段后污泥中细菌胞内残留的PHB含量要高于A~2/O系统; A~2/O系统沉淀段污泥的反硝化活性高于A/O系统,其硝酸盐还原酶活力是A/O系统的1. 08倍;该污泥回流后,尽管硝态氮充分但A/O系统缺氧段反硝化效果却较A~2/O系统差;沉淀阶段污泥的脱氮性能直接关系到缺氧段反硝化效果.因此,本研究认为在保证沉淀污泥反硝化不严重影响泥水分离的前提下,污水生物脱氮工程中应适当控制好氧段运行、维持沉淀池污泥适当反硝化来提升系统的脱氮效能,而不能仅仅是考虑控制缺氧段.  相似文献   

11.
同步脱氮除磷颗粒污泥硝化反硝化特性试验研究   总被引:4,自引:4,他引:0  
在厌氧/好氧交替运行的SBR反应器中,以成熟的脱氮除磷颗粒污泥为研究对象,对其硝化及反硝化特性进行研究.结果表明,静态试验中颗粒污泥的最大硝化速率为14.13 mg·(g·h)-1,最大反硝化速率为34.89 mg·(g·h)-1,最大缺氧吸磷反硝化速率为13.11 mg·(g·h)-1,污泥具有较好的硝化、反硝化性能;反应器中污泥最大硝化速率为4.60 mg·(g·h)-1,最大反硝化速率为1.43 mg·(g·h)-1;通过N的物料平衡得到,同步硝化反硝化反应去除N约为232.5 mg·d-1,占N去除总量的54.3%;另外,颗粒污泥对P和N的去除率分别在95%和90%左右,反应器具有较好的同步脱氮除磷效果.  相似文献   

12.
污泥龄及pH值对反硝化除磷工艺效能的影响   总被引:2,自引:1,他引:1  
以SBR成功富集后的反硝化聚磷菌(DPBs)为研究对象,分别考察了污泥龄(SRT,35、25、15 d)及pH值(7.5、8.0、8.5)对反硝化除磷过程的影响.结果表明,SRT从35d缩短至25d,使活性污泥浓度(MLVSS)从2821 mg·L-1降低为2301 mg·L-1,而污泥负荷(F/M,以COD/MLVSS计)从0.256kg·(kg·d)-1增加至0.312 kg·(kg·d)-1,虽然净释磷量及净吸磷量有所下降,但是由于污泥活性的增加,此阶段厌氧释磷、缺氧吸磷及比反硝化速率均达到最高,分别为25.07、15.92及9.45 mg·(g·h)-1,污泥含磷率从4.78%升为5.33%,出水PO43--P浓度保持在0.5 mg·L-1以下,即PO43--P去除率稳定在95%以上;当SRT进一步缩短为15d时,MLVSS低至1448 mg·L-1,污泥中DPBs占聚磷菌(PAOs)的比例从82.4%骤降为65.7%,表明过短的SRT使得DPBs逐渐从系统中流失,此阶段污泥含磷率降至3.43%,释磷、吸磷及比反硝化速率亦出现不同程度的降低.随着pH值的升高(7.5~8.0),厌氧释磷及缺氧吸磷速率也升高,pH值为8.0时分别达到25.86mg·(g·h)-1和16.62 mg·(g·h)-1;当pH超过8.0后,除磷效率快速下降,推测为磷化学沉淀导致.  相似文献   

13.
张玉君  李冬  王歆鑫  张杰 《环境科学》2021,42(9):4383-4389
为了探究间歇梯度曝气下污泥龄对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)的影响,研究短程硝化内源反硝化除磷系统对于处理低C/N比生活污水的优势作用,本文采用SBR反应器培养好氧颗粒污泥,实验进水采用实际生活污水.结果表明,在SRT由50 d逐渐降低至30 d过程中,比氨氧化速率由3.16 mg·(g·h)-1增加至4.38 mg·(g·h)-1,比亚硝酸盐氧化速率由3.4 mg·(g·h)-1降为1.8 mg·(g·h)-1左右,可知NOB活性降低约44%,从而使系统实现了短程硝化.当SRT为30 d时,由典型周期实验可知亚硝酸盐最大积累量可达6.93mg·L-1.由于系统中污泥浓度随SRT的减少而略有降低,因此在反应进行至40 d左右时根据DO曲线采取降低曝气量的策略,最终SRT为30 d时系统出水COD浓度为40.76 mg·L-1,TN浓度为12.4 mg·L-1,TP浓度为0.31 mg·L-1,强化了系统中C、N和P的同步去除,最终得到了稳定运行的短程硝化内源反硝化除磷系统.同时好氧颗粒污泥EPS含量与SRT呈现负相关性,蛋白质含量由污泥龄为50 d的66.7 mg·g-1升为30 d的95.1mg·g-1,多糖保持在12.1~17.2 mg·g-1的范围内,说明SRT的降低对蛋白质含量的影响较多糖大,当SRT为30 d时,PN/PS值保持在6.2左右,好氧颗粒污泥在该条件下仍能保持较好的结构稳定性.  相似文献   

14.
为了解不同进水C/P条件下同步硝化内源反硝化除磷(SNEDPR)的脱氮除磷特性.以实际城市污水为处理对象,采用延时厌氧(180 min)/低氧(溶解氧0.5~1.0 mg·L~(-1))运行的序批式反应器(SBR),考察了进水C/P(分别为60、30、20、15、10)对系统C、N、P去除特性的影响.结果表明:适当降低进水C/P(由60降至30)有利于提高系统内PAOs竞争优势.当C/P为30时系统除磷性能最高,厌氧段释磷速率(PRR)和好氧段吸磷速率(PUR,以P/MLSS计,下同)分别高达3.5mg·(g·h)-1和4.2 mg·(g·h)-1,出水PO3-4-P浓度均低于0.3 mg·L~(-1),且PPAO,An高达88.1%;但进一步降低进水C/P至10时,PO3-4-P去除率和PPAO,An分别由38.1%和82.4%降低至3.1%和5.3%,PRR和PUR分别仅为0.2 mg·(g·h)-1和0.24mg·(g·h)-1,系统表现出较差的除磷性能.降低C/P对系统COD去除性能没有影响,COD去除率稳定在85%左右.此外,当C/P由60降低至20时,系统硝化性能变差,表现为出水NH+4-N和NO-2-N浓度分别由0和6.9 mg·L~(-1)升高至5.1 mg·L~(-1)和16.2 mg·L~(-1);而当C/P进一步降低至10时,系统硝化性能得以恢复,但亚硝积累特性遭到破坏,表现为出水NH+4-N和NO-2-N浓度逐渐降低为0,但出水NO-3-N浓度由0.08 mg·L~(-1)升高至14.1 mg·L~(-1).SNED率先由62.1%降低为36.4%后又逐渐提高至56.4%.C/P低于15时,有利于提高GAOs的竞争优势,且C/P由20降至10时系统脱氮性能得以恢复,原因在于GAOs内源反硝化作用的增强.  相似文献   

15.
为提高枸杞枝作为反硝化碳源的效能,采用甲醇(体积占比分别为0、20%、50%、100%)-水-NaOH (0.01 g·mL-1)体系(分别简称为0组、20%组、50%组、100%组)对枸杞枝进行改性处理,研究原枸杞枝的静态释碳、改性前后枸杞枝的静态反硝化特性、表面形态和脱氮动力学.结果表明,原枸杞枝释碳过程同时符合二级动力学方程和Ritger-Peppas方程;第I阶段(1~3 d)为碳源快速释放期,第II阶段(4~21 d)为碳源稳定释放期;改性后枸杞枝纤维素和半纤维素含量占比增加了8.7%~35.2%;不同甲醇-水-NaOH体系改性枸杞枝平均反硝化速率依次为20%组>50%组>0组>100%组>对照组,20%甲醇-水-NaOH组反硝化速率最高(0.76 mg·g-1·d-1),表明20%甲醇-水-NaOH (0.01 g·mL-1)是枸杞枝改性的最佳条件;改性后的枸杞枝表面结构粗糙、不规则且有大量的孔洞产生,适合脱氮微生物附着生长,其反硝化脱氮过程符合Monod动力学方程(R2=0.96).  相似文献   

16.
刘佳  沈志强  周岳溪  曹蓉  李元志 《环境科学》2014,35(7):2639-2644
以聚丁二酸丁二醇酯(PBS)为固体碳源和生物膜载体,研究其脱氮性能以及添加惰性载体砾石对反应性能的影响.结果表明,PBS可作为反硝化固体碳源去除低C/N水体中的硝酸盐氮,但是所需的启动时间较长,为33 d左右.反硝化过程不会造成亚硝酸盐氮积累,但是会产生低于0.8 mg·L-1的氨氮.在PBS为碳源的反硝化体系中添加惰性载体来增加生物膜量,可以提高反硝化速率,PBS、PBS+30 g砾石、PBS+60 g砾石、PBS+90 g砾石4个体系的反硝化速率分别为5.33、7.04、10.05和6.93mg·(L·h)-1,反应均为零级反应.反硝化反应过程中(0~9 h),溶解性有机碳(DOC)先升高后降低,反应结束时(24 h),添加惰性载体砾石60 g和90 g体系的DOC分别为16.34 mg·L-1和19.22 mg·L-1,高于未添加砾石体系的13.48 mg·L-1.4个反硝化体系的pH值均低于初始值,是固体碳源降解过程中产生的酸性物质与反硝化产生的碱度综合作用的结果.  相似文献   

17.
李冬  魏子清  劳会妹  李帅  张杰 《环境科学》2019,40(12):5456-5464
为实现低C/N城市污水的同步脱氮除磷,采用SBR反应器以厌氧/好氧(A/O)为运行方式,在保持总曝气量900 L不变的条件下调整曝气策略[将均匀曝气2. 81 L·(h·L)-1改为先高强度4. 22 L·(h·L)-1后低强度1. 88 L·(h·L)-1的"高/低曝气"和先低强度1. 88 L·(h·L)-1后高强度4. 22 L·(h·L)-1的"低/高曝气"].试验考察了不同曝气策略下系统的脱氮除磷性能及污泥特性.结果表明,高/低曝气下系统的脱氮除磷效果最佳,出水NH_4+-N、NO_2--N、NO_3--N和TP浓度分别为0、0. 15、8. 12和0. 04 mg·L~(-1),总氮(TN)和总磷(TP)去除率分别为78. 33%和99. 19%,同步硝化内源反硝化(SNED)作用明显,SNED率为77. 08%.且相比于均匀曝气,系统硝化速率及反硝化速率均增加,反硝化速率(以N/VSS计)达到整个运行过程中的最大值,为14. 33 mg·(g·h)-1,同时颗粒污泥密实度、沉降性能及稳定性提高,污泥容积指数(SVI)为23. 49 m L·g~(-1).调整曝气策略为低/高曝气后,系统脱氮除磷性能变差,TN和TP去除率均降至最低,分别为51. 26%和58. 32%,但此时系统硝化性能最佳,氨氧化速率和硝酸盐生成速率均达到整个运行过程中的最大值,分别为14. 92 mg·(g·h)-1和7. 50 mg·(g·h)-1,同时颗粒污泥中丝状菌大量繁殖、结构松散、沉降性及稳定性均变差,SVI升至40. 76 m L·g~(-1).故采取高/低阶梯曝气策略有利于AGS系统高效脱氮除磷及提高稳定性.  相似文献   

18.
针对剩余活性污泥和餐厨垃圾厌氧联合消化产气效率不高的问题,通过投加微米零价铁,研究其对厌氧联合消化的强化效果及作用机制.结果说明,零价铁的添加强化了厌氧联合消化的产甲烷阶段,但对溶解、水解及酸化阶段没有明显影响.当零价铁的投加量为10 g·L-1时,经过15 d的厌氧消化,累积甲烷产量(以VS计)达到238.68 mL...  相似文献   

19.
湖泊沉积物既是氮磷等营养物质的储存库,也是水体营养盐的二次污染源,可以缓冲水体氮磷浓度变化,进而影响水体营养盐的生物可利用性和藻类生长.本文以太湖梅梁湾为研究对象,通过模拟实验研究沉积物参与下外源氮磷脉冲式输入对水体营养盐浓度和藻类生长的影响,并阐明氮磷在沉积物、水和藻类间的迁移转化及再分配过程.结果表明,当以0.30 mg·(L·d)~(-1)的速率脉冲式输入氮时,实验组(有沉积物)水体氮浓度远低于相应的对照组(无沉积物),沉积物参与下水体氮约以0.144~0.156 mg·(L·d)~(-1)的速率脱除,根据单位面积估算水体脱氮速率约为40.793~44.193 mg·(m~2·d)~(-1),脱氮量约占外源氮的48%~52%;而相应对照组水体约以0.021~0.039 mg·(L·d)~(-1)的速率脱氮,脱氮量仅占外源氮的7%~13%,可见沉积物-水界面作为浅水湖泊反硝化等脱氮过程的主要场所,对减轻湖泊氮负荷具有重要贡献.当以0.015 mg·(L·d)~(-1)的速率脉冲式输入磷时,沉积物表现出明显的"汇"效应,约52%~58%外源磷以2.210~2.422 mg·(m~2·d)~(-1)的速率汇入沉积物,其余约23%~26%外源磷被藻类吸收,约20%~22%则以溶解态存在水体,可见沉积物的参与能有效地缓冲水体磷浓度对外源磷的响应.无外源输入时,沉积物充当磷源,以约0.310~0.468 mg·(m~2·d)~(-1)的速率释放磷供给藻类生长.薄膜梯度扩散技术(ZrO-Chelex DGT)原位高分辨分析显示,沉积物间隙水中有效态磷浓度远高于上覆水,并与二价铁显著相关,表明受铁结合态磷的影响,沉积物-水界面氧化还原状况发生改变会造成内源磷的大量释放.总的说来,在外源得到有效控制时,沉积物中的磷可以缓慢释放进入上覆水中并供给藻类生长,延滞水体对外源控制的响应.因此,在湖泊蓝藻水华治理时,氮磷协调治理可以起到更快的治理效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号