首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以市政污泥为研究对象,基于污泥流变学,考察了工业尺寸的液液喷嘴、气液喷嘴进行搅拌时射流的流动形态及喷嘴轴向速度分布,并考察了气液喷嘴不带气管进行液液混合时的情况。通过流变实验,确定实验污泥为屈服-胀塑性流体,有触变性,其稠度系数k=0.000 2,流动系数n=1.535 5,表明射流为紊流。且每种类型射流轴向速度衰减规律有一定的自相似性,气液喷嘴在安装气管时射流效果较好。对液液喷嘴、气液喷嘴进行流速场测定,分别考察了其全流场速度方差加权平均值、死区容积百分数随喷嘴安装高度、喷嘴入射流速的变化规律。结果表明,随着入射流速及喷嘴距池底安装高度的增加,搅拌槽内污泥流速均匀程度增加、污泥流动停滞区减少。并且喷嘴安装高度为2 m,入射流速4.95 m·s~(-1)时液液、气液喷嘴的混合效果最佳,2种喷嘴经济入射流速分别为4.95 m·s~(-1)和3.77 m·s~(-1)。  相似文献   

2.
采用流变仪对不同含固率猪粪的流变性质进行测量,分析其流变特性,将流变数据与非牛顿流体模型进行拟合,得到用于描述猪粪流变特性的最佳流变方程。结果表明:猪粪是一种非牛顿流体,黏度随剪切速率的增加而减小并趋于稳定。基于其流变特性,运用计算流体力学(computational fluid dynamics,CFD)模拟技术,对猪粪厌氧消化反应器内的流场进行研究。模拟结果显示:反应器内速度最大值出现在桨叶末端,猪粪流体在其反应器内的宏观循环运动状态为沿着搅拌轴径向的绕流运动;壁面及顶部和底部区域速度几乎为零,形成死区,容积比率为29.85%。  相似文献   

3.
采用容积为200L的卧式厌氧消化反应器(以下简称卧式反应器),对高含固污泥(总固体(TS)≥10%(质量分数))的厌氧消化特性进行研究。通过序批运行、低负荷半连续运行、提负荷半连续运行逐步提高污泥TS从10.09%至12.58%,并对污泥颗粒的运动轨迹进行了计算机流体力学(CFD)模拟。结果表明,序批运行阶段污泥水解酸化特征显著;在低负荷半连续运行阶段,沼气产率平稳上升,在提负荷半连续运行阶段,沼气产率稳定在(0.359 2±0.011 0)m~3/(m~3·d),挥发性固体(VS)降解率稳定在22.05%±0.52%,高含固污泥在卧式反应器中厌氧消化产气性和稳定性良好。CFD模拟结果显示,污泥颗粒在卧式反应器中得到充分混合,卧式反应器运行稳定后,污泥厌氧消化剩余能量可达2.42MJ/(m~3·d),经济效益明显,具备良好的应用前景。  相似文献   

4.
改良型厌氧折流板反应器(modified anaerobic baffled reactor,mABR)的处理效率受水力特性的影响很大,而反应器升流室的升流速度又是影响反应器内水力特性的重要参数。使用CFD-fluent软件平台进行二维多相流数值模拟,在难降解废水水解酸化(固-液两相流)与高浓度有机废水发酵产气(气-液-固三相流)条件下,针对水流速度与固含率的变化,探究不同升流速度对反应器内流场特性的影响。结果表明:升流速度的增加及反应器厌氧产气有利于抬升泥水界面,促进泥水混合,提高传质效率;但过高的升流速度将导致污泥流失,使生物量的保持能力下降。通过分析可知,当两相流和三相流升流速度分别为2.0~2.5 m·h~(-1)和1.5~2.0 m·h~(-1)时,水力搅动及固含率分布较为显著,有利于泥水混合,使得反应器去除污染物效率最佳。  相似文献   

5.
在大型污泥搅拌机中探索采用偏心双轴搅拌,使用Fluent软件对偏心双轴搅拌槽内污泥流体的流场变化进行数值模拟,并与中心双层搅拌进行比较,分析2种结构搅拌槽内宏观流场结构、速度分布及功耗特性,通过实验测量不同转速下偏心双轴的功耗,仿真计算结果和实验值吻合较好。结果表明:偏心双轴搅拌形成的流场结构打破了中心搅拌的流场对称性,有效的消除了隔离区。偏心双轴搅拌槽内流场各方向的速度分量均比中心双层搅拌有明显的提高,速度梯度较大,能够增大搅拌混合区,有利于污泥固液两相的混合。在N=5 r·s~(-1)时偏心双轴搅拌的功耗约为中心双层搅拌的90.4%,具有明显的节能效果。  相似文献   

6.
污泥作为典型的不透明非牛顿流体,在厌氧消化反应器内的流场具有复杂性,难以直接进行流场测试分析。结合计算流体力学(CFD)技术,分析污泥厌氧消化反应器内的流场分布情况,探讨污泥在反应器内混合效果和对消化过程的影响,以验证校核反应器优化设计和运行,改善污泥在消化反应器内的流动和混合性能并最终提高反应器性能。在综合文献及前期研究工作的基础上,系统分析并重点关注了CFD数值模拟过程当中多相流模型和湍流模型的选取、污泥流变特性应用、反应器流场评估优化及耦合生化模型等的研究现状及进展,总结了目前污泥厌氧消化反应器CFD数值模拟过程存在的问题。并指出在考量污泥流变学特性的基础上,利用传质模型将反应器流场和生化过程相耦合,构建流场-生化耦合模型,获取基质转化规律,为优化污泥厌氧消化反应器设计运行提供理论依据,是CFD应用于厌氧消化反应器数值模拟的发展方向。  相似文献   

7.
在序批式厌氧反应器中探究了矿化垃圾对污泥厌氧消化产甲烷的影响。实验结果表明,矿化垃圾能够提高甲烷的产量并且提高甲烷的体积分数。当矿化垃圾投加量由0增加到5 g·L~(-1)时,甲烷的产量也由168.9 m L·(g VSS)-1(挥发性悬浮固体)增加到218.6 m L·(g VSS)-1,体积分数由60%增加至70%。然而继续提高矿化垃圾的投加量至7 g·L~(-1)对污泥厌氧消化造成一定的抑制作用。矿化垃圾的存在能够提高污泥中溶解性化学需氧量(SCOD)的溶出,挥发性脂肪酸的积累进而为产甲烷菌提供了充足的消化底物,从而提高了甲烷的产量。  相似文献   

8.
使用带隔板的推流式反应器(体积约为4 m3),对浮萍与猪粪(干重比1:1,湿重比7:1)的混合物、猪粪进行为期50 d的中温厌氧消化产气性能比较研究,结果表明,在有机负荷为3.5 g(VS)/(L·d)时,浮萍与猪粪(干重比1:1,湿重比7:1)混合物的VS产气率为0.31 L/g,COD转化率为63.2%,反应器容积产气率为1.00 m3/(m3·d);猪粪的VS产气率为0.28 L/g,COD转化率为57.1%,反应器容积产气率为0.71m3/(m3·d).进料COD和SS的平均浓度分别为19.19 g/L和14.28 g/L,推流式反应器对其平均去除率分别为59.7%和68.7%.由此说明,带隔板的推流式厌氧反应器对浮萍和猪粪的混合物有较好的厌氧消化能力,浮萍与猪粪混合物的厌氧消化性能优于猪粪.  相似文献   

9.
采用管式膜微滤高岭土悬浊液,考察了恒通量下曝气对膜污染的影响,并对不同膜面气体流速下跨膜压力和膜污染周期变化进行了研究,此外,采用阶梯通量法对临界通量进行了测定。结果表明,曝气可显著减缓膜污染,延长膜污染周期,同时提高膜的临界通量;随着膜面气体流速由0.067 m·s~(-1)提升至0.251 m·s~(-1)时,膜污染平均速率由0.366 k Pa·h~(-1)降低至0.104 k Pa·h~(-1),膜污染周期由8 d延长至31 d,临界通量由8~10 L·(m~2·h)-1提高至22~26 L·(m~2·h)-1。此外,通过惯性模型分析发现,膜的临界通量与膜面混合流速呈良好的线性关系,R~2=0.98;但随着膜面气体流速的增加,悬浊液中高岭土粒径逐渐变小,并且通过膜表面污染阻力构成分析发现,膜表面不可逆污染阻力由13.9%提高至31.6%,这不利于膜污染控制。  相似文献   

10.
为了改进完全混合反应器(continuous stirring tank reactor,CSTR)厌氧消化处理鸡粪的启动效果,通过逐级提高进料鸡粪浓度的方法在CSTR中进行中温(36?C)厌氧消化的启动实验,实验分为2个步骤:污泥适应性驯化和消化能力提升,即通过间歇添加2%浓度鸡粪的方法驯化活性污泥;利用逐级提高进料鸡粪浓度(2.1%、3.2%和5.2%)的方法提高污泥消化能力。结果表明:通过逐级提升进料鸡粪浓度的方法能够驯化出处理一定浓度鸡粪的活性污泥,当进料鸡粪浓度达到5.2%时,CSTR进料有机负荷(organic loading rate,OLR)、总固体含量(total solid,TS)去除率和产沼气量分别达到1.5 g·(L·d)~(-1)、60%和1 L·(L·d)~(-1),甲烷体积分数稳定在(65±3)%左右,总氨氮浓度最高达到1 200 mg·L~(-1),没有出现氨抑制的现象,污泥活性随进料鸡粪浓度提升而逐步得到驯化,从而成功启动反应器正常运行。为CSTR厌氧消化处理高氮基质启动提供了新的方法,具有重要的理论和实践意义。  相似文献   

11.
为了探究适合农作物秸秆进行厌氧消化产沼气的反应装置,选用单相反应装置连续搅拌反应釜(continuously stirred tank reactor,CSTR)和两相反应装置渗滤床(leach bed)上流式厌氧污泥床(upflow anaerobic sludge blanket,UASB)作为玉米秸秆厌氧消化的反应器,比较了玉米秸秆在这2种反应装置中的厌氧消化产气特性。研究结果显示,在水力停留时间为30 d、半连续的进料方式下,CSTR反应装置中有机负荷率(以原料VS计)为3.0 g·(L·d)-1时的VS甲烷产量为223 m L·g-1,而在相同的水力停留时间、批式进料方式下,L-UASB反应装置的VS甲烷产量为169 m L·g-1,前者原料中挥发性有机固体含量减少了53.7%,后者减少了43.5%,因此研究结果表明农作物秸秆的厌氧消化产气特性受反应装置影响较大。  相似文献   

12.
系统地研究了渗滤液添加量对于餐饮垃圾厌氧消化产气过程的影响,结果分析表明,餐饮垃圾与渗滤液联合厌氧消化,可以有效地缓解酸抑制现象,增强厌氧消化系统的稳定性,提高沼气产率。当餐饮垃圾负荷为40 g·L~(-1),渗滤液与水的比例为1.227∶1,将厌氧消化原液的氨氮调节至2 000 mg·L~(-1)时,厌氧消化效果最好。沼气产率可达到840 m L·g~(-1)(以TS计),甲烷产率可达到375 m L·g~(-1),累积沼气产量达到理论值的94.32%,累积甲烷产量达到理论值的74.77%。  相似文献   

13.
在(35±1)℃条件下,采用IC厌氧反应器对天津大港垃圾焚烧厂垃圾渗滤液进行处理,研究了COD的去除效果、容积负荷、沼气产量和污泥的颗粒化,分析了循环比、上升流速对反应器的影响.结果表明,厌氧反应器经60 d的启动运行后,达到300 m3/d的设计水量,进水容积负荷达到17.7 kg COD/(m3·d),水力停留时间3.7d,COD去除率高于80%,出水挥发酸(VFA)低于l 500 mg/L,平均每去除1 kg COD产沼气0.42 m3,适宜的上升流速和循环比为2.0 ~5.0 m/h、8∶1 ~20∶1.启动结束后,厌氧消化污泥明显出现颗粒化,颗粒污泥的沉降速度达到了67.5 ~ 96.0 m/h,0.3~1.0 mm的颗粒污泥量占有74%.  相似文献   

14.
杨祎楠  强虹  裴梦富  王瑾 《环境工程学报》2019,13(12):2963-2972
针对高固体鸡粪厌氧消化运行困难问题,利用完全混合式厌氧反应器(CSTR),通过逐级提高进料总固体浓度(TS)的方法,研究不同进料TS((5.20±0.56)%、(7.24±0.36)%、(9.30±0.26)%和(6.22±0.26)%)的鸡粪连续中温厌氧消化效果。实验结果表明,进料TS由(5.20±0.56)%提高为(9.30±0.26)%,挥发性固体(VS)产气率由(0.64±0.05) L·g~(-1)下降为0.07 L·g~(-1),有机物去除率明显减少,挥发性脂肪酸(VFAs)由(0.53±0.02) g·L~(-1)累积至(1.62±0.02) g·L~(-1),总氨氮浓度(TAN)和游离氨浓度(FA)分别由(1.06±0.11) g·L~(-1)和(0.07±0.02) g·L~(-1)累积至3.40 g·L~(-1)和0.68 g·L~(-1),消化过程受到氨抑制。采用Boltzmann模型对不同氨氮浓度下VS产甲烷率和VS去除率进行模拟,拟合结果表明,TAN升高所引发的FA持续累积导致高固体鸡粪厌氧消化氨抑制逐步形成,与VS产甲烷率相比,VS去除率对氨氮的抑制响应具有滞后性。降低进料TS至(6.22±0.26)%,氨抑制得到有效缓解,但反应器处于"抑制稳定状态"。因此,为保证反应器长期高效平稳运行,建议鸡粪连续中温厌氧消化的进料浓度不超过7.24%。研究为高固体鸡粪厌氧消化的工程化应用提供参考。  相似文献   

15.
为研究不同初始C/N值的混合物料对甘蔗叶干法厌氧消化过程中理化参数以及产沼气特性的影响及产气最佳的C/N值厌氧消化过程中细菌群落结构多样性,研究采用牛粪与甘蔗叶以及啤酒厂滤泥这3种有机固废物混合并加入自行研究设计的发酵罐里进行厌氧消化,并采用Nested-PCR(巢式PCR)技术扩增消化过程中细菌的16S r DNA V3区域,并通过DGGE方法分析初始C/N值为15.02厌氧消化过程细菌群落的多样性。实验结果表明,初始C/N值为15.02的混合物料产甲烷最佳,最高累计产气量为1 748.63 m L·kg~(-1),甲烷最高含量为59.26%,最高日产甲烷量为13.58 m L·kg~(-1);通过研究最佳C/N值为15.02的细菌多样性,可知在厌氧消化过程中细菌数量和群落结构丰富多样,样品间的细菌群落结构差异性相对较大,样品间存在与产沼气相关的共有的优势细菌。  相似文献   

16.
主要研究了2种沉积物粒径(35μm和130μm)及底床微地形对沉积物中内源溶解性有机磷释放的影响。选取某浅水湖泊沉积物为研究对象,对其人工污染溶解性有机磷別用室内循环直流水槽顶盖驱动流模拟风生流,考察静态和风生流作用下不同粒径沉积物及底床微地形对溶解性有机磷释放的影响。实验结果表明:在20 cm·s~(-1)及38 cm·s~(-1)2种驱动流速条件下35μm粒径沉积物实验组中沉积物有机磷释放速率均大于130μm实验组。对于35μm粒径沉积物实验组在20 cm·s~(-1)驱动水流扰动下,沉积物有机磷的平衡释放量为0.44 mg·L~(-1),在38 cm·s~(-1)驱动水流扰动下为0.49 mg·L~(-1);对于130μm粒径沉积物实验组在20 cm·s~(-1),和38 cm·s~(-1)2种扰动下的沉积物有机磷平衡释放量分別为0.29 mg·L~(-1)、0.30 mg·L~(-1);驱动流速的提高促使达到平衡状态时的释放量提高小粒径沉积物提高驱动流速更利于平衡释放量的提高且高驱动流速缩短达到释放平衡所需的时间。在底床微地形(对地形的描述采用:y=O.1sin2πx)实验中发现,静态条件下波峰处上覆水有机磷浓度首先逐渐降低至0.18 mg·L~(-1),其后升高至0.40 mg·L~(-1)并达到平衡而波谷处则不断上升至极大值0.87 mg·L~(-1)其后下降至0.77 mg·L~(-1)并达到平衡;而在20 cm·s~(-1)的驱动水流扰动下,波峰波谷处上覆水有机磷浓度变化较为_致均逐渐增长至极大值0.39 mg·L~(-1)和0.45 mg·L~(-1)后达到平衡状态。此外,在静态和动态条件下,波谷处上覆水中有机磷含量始终高于波峰处。  相似文献   

17.
以拜耳法赤泥为二氧化碳(CO_2)固化剂,提出了基于超声波机械搅拌耦合作用下赤泥吸收二氧化碳的新思路,以期实现"以废治废"、行业气固两类废弃物得到高效综合利用的目标。以拜耳赤泥吸收低浓度二氧化硫的前期研究为基础,自行设计了超声波与机械搅拌耦合作用的鼓泡反应器,利用其"空化作用"与机械搅拌的耦合作用促进赤泥对低浓度二氧化碳的高效吸收。考察了在焙烧条件、温度、搅拌桨转速、液固比、气体流量、超声波功率对赤泥吸收二氧化碳的影响规律,得到最优条件,焙烧后可以大大提高赤泥对CO_2的固定能力,单独机械搅拌作用下,赤泥吸收CO_2适宜的条件为:反应温度25℃、气体流量0.025 m3·h~(-1)、液固比为6:1和搅拌转速150 r·min~(-1),此时最大固碳量为71.72 g·kg~(-1),加入超声波后固碳效果进一步提高,最佳超声波功率为600 W。  相似文献   

18.
为探究组合启动模式实现厌氧氨氧化反应器高效启动和稳定运行的可行性,分别采用接种短程硝化污泥结合提高进水基质(A)和接种厌氧氨氧化污泥结合缩短水力停留时间(B)2种组合方式启动改良型UASB厌氧氨氧化反应器,对反应器启动效果进行研究,并通过改变进水基质比和低温冲击探究启动成功后的反应器性能。结果表明:A反应器启动成功时的总氮去除负荷(NRR)为0.520 kg·(m~3·d)~(-1)、亚硝化单胞菌Nitrosomonas相对丰度大幅下降、主要厌氧氨氧化菌属由Candidatus Kuenenia转化为Candidatus Brocadia;而B反应器NRR达到1.950 kg·(m~3·d)~(-1)、Candidatus Kuenenia始终为优势菌属。随着进水基质比的提高,B反应器的NRR和上升幅度始终高于A反应器,具有更强的抗负荷能力。当温度由35℃下降至15℃时,A和B反应器污泥对基质的降解速率分别下降92.94%和81.38%;温度恢复至35℃后,A反应器污泥降解速率的回升率大于B反应器污泥。因此,接种厌氧氨氧化污泥和缩短水力停留时间的组合方式更有利于改良型UASB厌氧氨氧化反应器的高效启动和稳定运行。  相似文献   

19.
研究了上流式厌氧污泥床(UASB)反应器中厌氧氨氧化工艺的脱氮性能。接种体积比为1∶1的已驯化半年的厌氧氨氧化污泥混培物和城市污水处理厂回流污泥,采用提高基质浓度和缩短水力停留时间(HRT)2种方式提高UASB反应器的脱氮性能。结果发现,2种方式结合可在UASB反应器中获得较高的脱氮速率,经过280d后,最高总氮去除速率达到5.16kg/(m3·d)。缩短HRT并未对UASB反应器的脱氮效果产生不良影响,反而强化了脱氮性能。HRT由0.4d缩短至0.2d时,总氮去除速率由1.89kg/(m3·d)增加到3.66kg/(m3·d)。形成的颗粒污泥中的细菌的细胞形态不规则,内部有厌氧氨氧化体,为典型厌氧氨氧化菌结构特征。污泥的比基质转化速率为3.15kg/(kg·d)。经16SrDNA检测,污泥中的厌氧氨氧化菌属于"Candidatus Kuenenia"属。  相似文献   

20.
高固污泥的厌氧消化速率低下,严重限制了有机物的利用。在序批式反应器中探究了臭氧预处理对高固污泥厌氧消化的影响。实验结果表明臭氧预处理能够显著促进高固污泥的消化,且最佳臭氧的剂量为80 mg·g~(-1)(SS),相应的最大甲烷产量为238 mL·g~(-1)(VSS),是空白对照组的1.36倍。进一步研究表明,臭氧的投加能够促进溶解性化学需氧量(SCOD),溶解性蛋白质和多糖的溶出。最后NH_4~+-N和PO_4~(3-)-P的溶出量进一步验证了臭氧能够促进高固污泥的溶出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号