共查询到20条相似文献,搜索用时 5 毫秒
1.
Biological removal of antiandrogenic activity in gray wastewater and coking wastewater by membrane reactor process 总被引:1,自引:0,他引:1
A recombinant human androgen receptor yeast assay was applied to investigate the occurrence of antiandrogens as well as the mechanism for their removal during gray wastewater and coking wastewater treatment. The membrane reactor (MBR) system for gray wastewater treatment could remove 88.0% of antiandrogenic activity exerted by weakly polar extracts and 97.3% of that by moderately strong polar extracts, but only 32.5% of that contributed by strong polar extracts. Biodegradation by microorganisms in the MBR contributed to 95.9% of the total removal. After the treatment, the concentration of antiandrogenic activity in the effluent was still 1.05 μg flutamide equivalence (FEQ)/L, 36.2% of which was due to strong polar extracts. In the anaerobic reactor, anoxic reactor, and membrane reactor system for coking wastewater treatment, the antiandrogenic activity of raw coking wastewater was 78.6 mg FEQ/L, and the effluent of the treatment system had only 0.34 mg FEQ/L. The antiandrogenic activity mainly existed in the medium strong polar and strong polar extracts. Biodegradation by microorganisms contributed to at least 89.2% of the total antiandrogenic activity removal in the system. Biodegradation was the main removal mechanism of antiandrogenic activity in both the wastewater treatment systems. 相似文献
2.
Coking wastewater(CW) contains toxic and macromolecular substances that inhibit biological treatment. The refractory compounds remaining in biologically treated coking wastewater(BTCW) provide chemical oxygen demand(COD) and color levels that make it unacceptable for reuse or disposal. Gas-phase pulsed corona discharge(PCD) utilizing mostly hydroxyl radicals and ozone as oxidants was applied to both raw coking wastewater(RCW) and BTCW wastewater as a supplemental treatment. The energy efficiency of COD,phenol, thiocyanate and cyanide degradation by PCD was the subject of the research. The cost-effective removal of intermediate oxidation products with addition of lime was also studied. The energy efficiency of oxidation was inversely proportional to the pulse repetition frequency: lower frequency allows more effective utilization of ozone at longer treatment times. Oxidative treatment of RCW showed the removal of phenol and thiocyanate at 800 pulses per second from 611 to 227 mg/L and from 348 to 86 mg/L, respectively, at 42 k Wh/m~3 delivered energy, with substantial improvement in the BOD5/COD ratio(from 0.14 to 0.43).The COD and color of BTCW were removed by 30% and 93%, respectively, at 20 k Wh/m~3,showing energy efficiency for the PCD treatment exceeding that of conventional ozonation by a factor of 3–4. Application of lime appeared to be an effective supplement to the PCD treatment of RCW, degrading COD by about 28% at an energy input of 28 k Wh/m3 and the lime dose of 3.0 kg/m~3. The improvement of RCW treatability is attributed to the degradation of toxic substances and fragmentation of macromolecular compounds. 相似文献
3.
Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500 days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. 相似文献
4.
In this study, ultraviolet(UV) and vacuum ultraviolet(VUV) photolysis were investigated for the pre-treatment and post-treatment of coking wastewater. First, 6-fold diluted raw coking wastewater was irradiated by UV and VUV. It was found that 15.9%–35.4% total organic carbon(TOC) was removed after 24 hr irradiation. The irradiated effluent could be degraded by the acclimated activated sludge. Even though the VUV photolysis removed more chemical oxygen demand(COD) than UV, the UV-irradiated effluent demonstrated better biodegradability. After 4 hr UV irradiation, the biological oxygen demand BOD5/COD ratio of irradiated coking wastewater increased from 0.163 to 0.224, and its toxicity decreased to the greatest extent. Second, the biologically treated coking wastewater was irradiated by UV and VUV. Both of them were able to remove 37%–47% TOC within 8 hr irradiation.Compared to UV, VUV photolysis could significantly improve the transparency of the bio-treated effluent. VUV also reduced 7% more ammonia nitrogen(NH+4–N), 17%more nitrite nitrogen(NO-2–N), and 18% more total nitrogen(TN) than UV, producing 35%less nitrite nitrogen(NO-3–N) as a result. In conclusion, UV irradiation was better in improving the biodegradability of coking wastewater, while VUV was more effective at photolyzing the residual organic compounds and inorganic N-species in the bio-treated effluent. 相似文献
5.
The dynamic change of microbial community during sludge acclimation from aerobic to anaerobic in a MBR for coking wastewater treatment was revealed by Illumina Miseq sequencing in this study. The diversity of both Bacteria and Archaea showed an increase–decrease trajectory during acclimation, and exhibited the highest at the domestication interim. Ignavibacteria changed from a tiny minority(less than 1%) to the dominant bacterial group(54.0%) along with acclimation. The relative abundance of Betaproteobacteria kept relatively steady, as in this class some species increased coupled with some other species decreased during acclimation. The dominant Archaea shifted from Halobacteria in initial aerobic sludge to Methanobacteria in the acclimated anaerobic sludge. The dominant bacterial and archaeal groups in different acclimation stages were indigenous microorganisms in the initial sludge, though some of them were very rare. This study supported that the species in"rare biosphere" might eventually become dominant in response to environmental change. 相似文献
6.
In this study, ultraviolet (UV) and vacuum ultraviolet (VUV) photolysis were investigated for the pre-treatment and post-treatment of coking wastewater. First, 6-fold diluted raw coking wastewater was irradiated by UV and VUV. It was found that 15.9%–35.4% total organic carbon (TOC) was removed after 24 hr irradiation. The irradiated effluent could be degraded by the acclimated activated sludge. Even though the VUV photolysis removed more chemical oxygen demand (COD) than UV, the UV-irradiated effluent demonstrated better biodegradability. After 4 hr UV irradiation, the biological oxygen demand BOD5/COD ratio of irradiated coking wastewater increased from 0.163 to 0.224, and its toxicity decreased to the greatest extent. Second, the biologically treated coking wastewater was irradiated by UV and VUV. Both of them were able to remove 37%–47% TOC within 8 hr irradiation. Compared to UV, VUV photolysis could significantly improve the transparency of the bio-treated effluent. VUV also reduced 7% more ammonia nitrogen (NH4+–N), 17% more nitrite nitrogen (NO2−–N), and 18% more total nitrogen (TN) than UV, producing 35% less nitrite nitrogen (NO3−–N) as a result. In conclusion, UV irradiation was better in improving the biodegradability of coking wastewater, while VUV was more effective at photolyzing the residual organic compounds and inorganic N-species in the bio-treated effluent. 相似文献
7.
Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater 总被引:1,自引:0,他引:1
In this study, ultraviolet (UV) and vacuum ultraviolet (VUV) photolysis were investigated for the pre-treatment and post-treatment of coking wastewater. First, 6-fold diluted raw coking wastewater was irradiated by UV and VUV. It was found that 15.9%-35.4% total organic carbon (TOC) was removed after 24 hr irradiation. The irradiated effluent could be degraded by the acclimated activated sludge. Even though the VUV photolysis removed more chemical oxygen demand (COD) than UV, the UV-irradiated effluent demonstrated better biodegradability. After 4 hr UV irradiation, the biological oxygen demand BOD5/COD ratio of irradiated coking wastewater increased from 0.163 to 0.224, and its toxicity decreased to the greatest extent. Second, the biologically treated coking wastewater was irradiated by UV and VUV. Both of them were able to remove 37%-47% TOC within 8 hr irradiation. Compared to UV, VUV photolysis could significantly improve the transparency of the bio-treated effluent. VUV also reduced 7% more ammonia nitrogen (NH4+-N), 17% more nitrite nitrogen (NO2--N), and 18% more total nitrogen (TN) than UV, producing 35% less nitrite nitrogen (NO3--N) as a result. In conclusion, UV irradiation was better in improving the biodegradability of coking wastewater, while VUV was more effective at photolyzing the residual organic compounds and inorganic N-species in the bio-treated effluent. 相似文献
8.
Micro-electrolysis technology for industrial wastewater treatment 总被引:15,自引:0,他引:15
Experiments were conducted to study the role of micro-electrolysis in removing chromaticity and COD and improving the biodegradability of wastewater from pharmaceutical.dye-printing and papermaking plants.Results showed that the use of micro-electrolysis technology could remove more than 90% of chromaticity and more than 50% of COD and greatly improved the biodegradability of pharmaceutical wastewater.Lower initial pH could be advantageous to the removal of chromaticity. A retention time of 30 minutes was recommended for the process design of micro-electrolysis.For the use of micro-electrolysis in treatment of dye-printing wastewater,the removal rates of both chromaticity and COD were increased from neutral condition to acid condition for disperse blue wastewater;more than 90% of chromaticity and more than 50% of COD could be removed in neutral condition for vital red wastewater. 相似文献
9.
10.
11.
混凝法处理有机氯农药废水的研究 总被引:7,自引:1,他引:7
以有机氯农药废水为研究对象 ,研究了无机混凝剂PAC及其与有机高分子混凝剂PAM (J 3450 ,J 1 1 50 )复合使用的混凝处理特性。通过正交实验确定了混凝反应各种影响因子的最佳操作条件。在此条件下 ,水质 1、2的COD去除率分别为 38%、40 .6 % ;色度去除率分别为 98% ,2 0 %。混凝处理后 2种水质的B/C值也得到了提高。在各影响因子与COD去除率的关系曲线基础上 ,分析了废水中各影响因子的作用机理。 相似文献
12.
Colour and organic removal of biologically treated coffee curing wastewater by electrochemical oxidation method 总被引:3,自引:0,他引:3
IntroductionCoffeegreenbeansCleaningandwashingWashingeffluentRoastingandgrindingRoastandgroundcoffeeChicorycubesCoffee chicorymixtureExtractionScrewpressliquorCentrifugationSludgeblowdownConcentrationCondensateSpraydryingandpackingFig .1 Schematicsofco… 相似文献
13.
14.
15.
焦化废水含有毒物质多,生物降解性能差,对环境危害大。实验采用厌氧水解(酸化)-好氧(高效复合菌+活性污泥)工艺处理焦化废水,进水COD、BOD5浓度分别为:698.13mg/l、232.0mg/l,经12h厌氧水解、18h好氧曝气后出水COD、BOD,浓度分别为136.93mg/1、39.3mg/l,NH3一N的去除率为68.37%。出水COD、BOD,满足《污水综合排放标准》(GB8978-96)中的排放要求。 相似文献
16.
采用厌氧氨氧化(ANAMMOX)工艺处理焦化废水,在厌氧34℃、pH值7.5~8.5,HRT为33h的条件下,经过115d成功启动厌氧氨氧化反应器.当进水NH4+-N、NO2--N浓度分别为80、90mg/L左右时, TN负荷可达160mg/(L·d),系统NH4+-N和NO2--N的去除率最高分别达86%和98%,TN去除率可达75%. GC-MS分析结果表明,酚类是焦化废水中较易被生物利用的有机物,ANAMMOX过程对好氧短程硝化工艺出水残余低浓度酚类有机物有进一步去除作用. 相似文献
17.
微电解—SBR组合工艺处理漂染废水 总被引:4,自引:0,他引:4
采用微电解-SBR组合工艺对漂染废水进行了处理研究。结果表明,以微电解作预处理,使 漂染废水的可生化性BOD5/COD比值为0.22-0.26提高到0.35-0.57。再经SBR法和炉渣吸附法处理后,各项水质指标均达GB8978-88《污水综合排放标准》中纺织印染工业的一级标准。 相似文献
18.
生物-微电解组合工艺处理染料废水研究 总被引:1,自引:0,他引:1
采用上流式污泥床过滤器(upflow blanket filter,UBF)+曝气生物滤池(biological aerated filter,BAF)+微电解的组合工艺,对盐度接近2%、色度和COD分别约为8000倍和600.5mg/L的染料废水进行处理。经过连续120d的稳定运行后,组合系统处理效果良好,脱色率和COD去除率分别达到99%和75%以上。UBF和微电解单元均可以大幅度提高废水的可生化性,有利于进一步的生物处理。UV—Vis扫描和GC—MS分析表明,该组合工艺能破坏染料的发色基团和共轭双键,并能高效降解原水中的酚类、氯代有机物和复杂的杂环类化合物。实验结果表明,UBF+BAF+微电解的组合工艺是处理染料废水的一种有效方法。 相似文献
19.
通过将Fenton法应用于印染废水的处理,研究pH值、温度、反应时间、Fe2+投加量以及H2O2投加量对Fenton试剂处理印染废水的影响,同时确定Fenton法处理印染废水的最适反应条件。实验结果表明:(1)最适反应条件,即pH值、温度、反应时间、Fe2+投加量、H2O2投加量分别为3,50℃,45 min,70 mg/L,2.5 mL/L,此时COD的去除率最高,为66.60%。(2)pH值为3时,下列因素对COD的去除率影响程度大小依次为H2O2投加量Fe2+投加量反应时间反应温度。 相似文献
20.
焦化废水经生化处理后的尾水中含有多种溶解性有机物(DOM),可能成为消毒副产物的前体物,进而影响受纳水体下游给水厂的水质安全.因此,对焦化废水外排水(尾水)的消毒副产物生成潜能进行了分析,以实际焦化废水厂尾水为基质,采用气相色谱(GC)考察了O3氧化深度处理前后卤乙腈和三卤甲烷的生成潜能,并结合分子质量分布法和三维荧光光谱法分析了O3氧化处理尾水过程中前体物的转化规律.GC结果表明,焦化废水尾水各个分子质量范围的卤乙腈和三卤甲烷生成潜能分别达到1950.5~3965.1μg.L-1和1498.2~2571.2μg.L-1,表明工业废水排放之前需要考虑其对水体消毒副产物生成潜能的贡献.O3氧化作用可以实现尾水中消毒副产物前体物的削减,相同反应时间的条件下O3浓度越高其削减越有效.溶解性有机碳(DOC)及在254nm波长下的吸光度值(UV254)分析结果表明,O3氧化能部分矿化尾水中的有机物,并优先分解不饱和芳香性有机组分.分子质量和荧光光谱分析结果表明,O3氧化优先矿化小分子组分(<1kDa),并将尾水中大分子有机物分解为小分子(<1kDa),对活泼基团进行预氧化,从而实现氯消毒副产物生成潜能的削减. 相似文献