首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
In this study, a full-scale internal circulation(IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste(MSW)incineration plant, in which anaerobic sludge granulation was intensively investigated. Results showed that the IC reactor achieved excellent treatment performance under high organic loading rates(OLR) of 21.06–25.16 kg chemical oxygen demand(COD)/(m3? day). The COD removal efficiency and biogas yield respectively reached 89.4%–93.4% and 0.42–0.50 m3/kg COD.The formation of extracellular polymeric substances(EPS) was closely associated with sludge granulation. Protein was the dominant component in sludge EPS, and its content was remarkably increased from 21.6 to 99.7 mg/g Volatile Suspended Solid(VSS) during the reactor operation. The sludge Zeta potential and hydrophobicity positively correlated with the protein/polysaccharide ratio in EPS, and they were respectively increased from-26.2 m V and 30.35% to-10.6 m V and 78.67%, which was beneficial to microbial aggregation. Three-dimensional fluorescence spectroscopy(3 D-EEM) and Fourier transform infrared spectroscopy(FT-IR)analysis further indicated the importance of protein-like EPS substances in the sludge granulation. Moreover, it was also found that the secondary structures of EPS proteins varied during the reactor operation.  相似文献   

2.
In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of microbial community and dominant bacterial groups that impact the nitrogen removal efficiency of the aerobic nitrifying granules were analyzed and identified using 16s rDNA sequence and denaturing gradient gel electrophoresis (DGGE) profiles. The results presented here demonstrated that the influence of the community structure of seed sludge on the properties of aerobic nitrifying granules was remarkable, and the granules cultivated by activated sludge from a beer wastewater treatment plant showed better performance, with a stable sludge volume index (SVI) value of 20 mL/g, high extracellular polymeric substance (EPS) content of 183.3 mg/L, high NH4+-N removal rate of 89.42% and abundant microbial population with 10 dominant bacterial groups. This indicated that activated sludge with abundant communities is suitable for use as seed sludge in culturing aerobic nitrifying granules.  相似文献   

3.
The present study investigated the relationship between N-acyl-homoserine lactone(AHL)-based quorum sensing(QS) and the physico-chemical properties of aerobic granules.Stable mature granules were observed in SBR2 and SBR3 with average diameters of 0.96,and1.49 mm,respectively. The sludge densities of aerobic granules in SBR2 and SBR3 were1.0246,and 1.0201 g/mL,respectively,which were higher than that of flocculent sludge in SBR1(1.0065 g/mL). The results showed that the activity of AHL-based QS in SBR2 and SBR3 amounted to 2.4- and 2.1-fold induction,however,that in SBR1 with flocculent sludge was1.6-fold induction. In addition,the results also showed that the activity of AHL-based QS in the three reactors rose in the feast condition,and then dropped with the consumption of substrate. However,the activity of AHL-based QS in these three reactors recovered again in prolonged starvation. Furthermore,the results showed that the enhancement of AHL-based QS favored the extracellular polymeric substance production of microorganisms in activated sludge. Thus,it could be concluded that aerobic granules showed higher AHL-based QS than flocculent sludge,which resulted from the higher sludge density of aerobic granules than flocculent sludge. AHL-based QS was related to the metabolism energy in the feast condition; however,in prolonged starvation,microorganisms would emit more AHL-like molecules to protect themselves to resist starvation. Moreover,the enhancement of AHL-based QS favored the EPS component productivity of the microorganisms in activated sludge,which contributed to maintain the aerobic granular structure.  相似文献   

4.
SBAR中好氧污泥颗粒化及其特性   总被引:12,自引:1,他引:12  
采用气升式内循环间歇反应器对好氧污泥颗粒化的过程进行了研究,考察了不同水力循环时间下好氧污泥颗粒化过程及其特性,并且对反应器中形成的好氧颗粒污泥内部菌群形态进行了描述.结果表明,不同水力循环时间对好氧颗粒污泥生长特性产生了很大的影响,在较短水力循环时间下,颗粒污泥粒径增长速度快,形成的颗粒粒径多数在 1.0~2.0mm 之间,并且 VSS含量达 92.08%,强度也较高,而在较长水力循环时间中形成的颗粒粒径在 0.5~1.0mm 之间、VSS 含量在 83.92%,污泥强度下降.  相似文献   

5.
王硕  于水利  付强  徐巧  李激 《环境科学学报》2015,35(6):1779-1785
含油废水中因含有较高浓度的油脂类物质和聚合物而对环境造成危害,威胁人类健康,同时,为解决采用传统膜分离工艺运行成本较高的难题,开展了基于好氧颗粒污泥技术的含油废水处理研究.结果表明,以含油废水启动反应器,经35 d好氧颗粒污泥培养成熟,COD和溶解性油的去除率高达86.0%和94.2%;在絮状污泥颗粒化过程中,污泥胞外聚合物中蛋白质类物质含量提高3.7倍,蛋白质类物质与多糖类物质比值升高到2.72,证明胞外聚合物内蛋白质类物质浓度增加是活性污泥颗粒化的重要因素;好氧颗粒污泥荧光光谱结果显示好氧颗粒污泥中蛋白质类物质的稳定存在是好氧颗粒污泥形成的重要因素.选取好氧颗粒污泥技术处理含油废水的效果和成本均优于常规生物处理工艺和膜分离工艺,由于污泥及其胞外聚合物中多糖类和蛋白质类物质含量均较高,适用于回收污泥资源,对含油污泥的资源化利用意义重大.  相似文献   

6.
Ca~(2+)、Mg~(2+)对好氧污泥快速颗粒化的影响研究   总被引:1,自引:0,他引:1  
为研究金属离子的投加对好氧污泥颗粒化进程的影响,在3个构造一致的序批式活性污泥反应器(SBR)中分别接种普通活性污泥、投加50 mg·L-1Ca2+的活性污泥和投加50 mg·L-1Mg2+的活性污泥来培养好氧颗粒污泥.结果表明:金属离子的投加能缩短好氧污泥颗粒化时间,改善颗粒污泥的性质,Ca2+更多地影响颗粒污泥的物理性质,Mg2+主要影响生化性质.Ca2+、Mg2+的投加可促进细胞分泌胞外聚合物(EPS),以及蛋白质(PN)和多糖(PS)的含量增加,且Mg2+较Ca2+对EPS中组分及组分比例影响更大.此外,Ca2+、Mg2+投加下培养的好氧颗粒污泥具有更强的除污性能.  相似文献   

7.
胞外聚合物(Extracellular Polymeric Substances,EPS)对污泥沉降具有重要作用.以一体式部分亚硝化-厌氧氨氧化工艺为对象,针对出现的污泥膨胀问题,通过停止投加乙酸钠、调整SRT和曝停比等措施控制了污泥膨胀,并考察整个过程中胞外聚合物变化特征.结果表明,阶段Ⅰ~Ⅱ(0~77 d),SVI升至215.86 mL·g-1,TN去除率仍稳定在60.88%;阶段Ⅲ(78~109 d),SVI维持在210.16 mL·g-1,TN去除率下降至32.19%;阶段Ⅳ(110~140 d),SVI下降至107.53 mL·g-1,TN去除率也恢复至54.55%,AOB、NOB和ANAMMOX活性分别恢复至0.42、0.06、0.20 g·g-1·d-1.污泥膨胀得到控制以后,溶解性EPS(Solubility EPS,S-EPS)、溶解性蛋白(Solubility PN,S-PN)从243.15、213.25 mg·g-1分别下降至110....  相似文献   

8.
以苯甲酸(BA)、邻苯二甲酸(PA)、连苯三甲酸(HA)、1-萘甲酸(1NA)为研究对象,探究了不同结构芳香酸对厌氧颗粒污泥理化特性与微生物群落的影响.结果表明,在40 d的接触实验中,1NA实验组对溶解性化学需氧量(SCOD)的去除率为86.09%,与空白对照组相比降低了7%.4个实验组污泥疏松胞外聚合物(LB-EP...  相似文献   

9.
为研究超声波促进污泥缺氧/好氧消化的机理,采用最佳超声波参数(超声频率28kHz,超声密度0.1W.mL-1,超声时间15min,超声间隔时间12h)与缺氧/好氧消化衔接进行间歇试验,研究了消化过程中污泥胞外聚合物(EPS)组分(蛋白质、多糖、DNA)和相应溶出物占总量的比例,以及酶活性(蛋白酶,脱氢酶)和菌落数的变化...  相似文献   

10.
Biopolymer solubilization is considered to be the rate-limiting stage of anaerobic digestion of waste activated sludge(WAS). Oxidation processes have been proven to be effective in disrupting sludge flocs and causing solubilization of the solid biopolymers. In this study,WAS was treated by NaNO2 or H2 O2 oxidation at p H of 2. The changes in extracellular polymeric substances properties and the speciation of heavy metals were investigated. The results revealed that both NaNO2 and H2 O2 treatments were effective in solubilizing organics in WAS, while the conversion of biopolymers in the two treatment processes was different. Free nitrous acid destroyed the gel network structure of EPS, and organic materials were released from the solid phase to the supernatant. Indigenous peroxidase catalyzed H2 O2 to produce hydroxyl radicals which caused significant solubilization of biopolymers, and the protein-like substances were further degraded into micro-molecule polypeptides or amino acids at high dosages of H2 O2. During the oxidation processes, Zn, Cd and Cu, with excellent mobility, tended to migrate to the supernatant, and thus were easy to remove through the liquid–solid separation process. Ni and As showed moderate migration ability, of which the residual fraction tended to transform into reducible and soluble fractions. With poor mobility, Cr and Pb mainly existed in the forms of residual and oxidizable fractions, which were difficult to dissolve and remove from WAS. Both NaNO2 and H2 O2 treatment resulted in the enhancement of sludge solubilization efficiency and heavy metal mobility in WAS, but different heavy metals showed distinct migration and transformation behaviors.  相似文献   

11.
The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined. The total EPS in anaerobic digested sludge were extracted by the cation exchange resin method. Another EPS extraction method, the centrifugation and sonication technique was employed to stratify the EPS into three fractions: slime, loosely bound (LB)-EPS, and tightly bound (TB)-EPS from the outside to the inside of the anaerobic digested sludge. Proteins and polysaccharides were dispersed uniformly across the different EPS fractions, and humic-like substances were mainly partitioned in the slime, with TB-EPS second. Protein was the major constituent of the LB-EPS and TB-EPS, and the corresponding ratios ranged from 54.0% to 65.6%. The hydrophobic part in the EPS chemical components was primarily comprised of protein and DNA, while the hydrophilic part was mainly composed of polysaccharide. In the slime, the hydrophobic values of several EPS chemical components (protein, polysaccharide, humic-like substances and DNA) were all below 50%. The protein/polysaccharide ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS: the greater the protein/polysaccharide ratio of the EPS was, the greater the Zeta potential and the higher the isoelectric point value were. All Zeta potentials of the EPS showed a decreasing trend with increasing pH. The corresponding isoelectric point values (pH) were 2.8 for total EPS, 2.2 for slime, 2.7 for LB-EPS, and 2.6 for TB-EPS. As the ionic strength increased, the Zeta potentials sharply increased and then gradually became constant without charge reversal. In addition, as the temperature increased (< 40°C), the apparent viscosity of the EPS decreased monotonically and then gradually became stable between 40 and 60°C.  相似文献   

12.
Extracellular polymeric substances (EPS) form a stable gel-like structure to combine with water molecules through steric hindrance, making the mechanical dewatering of wastewater sludge considerably difficult. Coagulation/flocculation has been widely applied in improving the sludge dewatering performance, while sludge properties (organic fraction and solution chemistry conditions) are highly changeable and have important effects on sludge flocculation process. In this work, the alkalinity effects on sludge conditioning with hydroxy-aluminum were comprehensively investigated, and the interaction mechanisms between EPS and hydroxy-aluminum with different speciation were unraveled. The results showed that the effectiveness of hydroxy-aluminum conditioning gradually deteriorated with increase in alkalinity. Meanwhile, the polymeric hydroxy-aluminum (Al13) and highly polymerized hydroxy-aluminum (Al30) were hydrolysed and converted into amorphous aluminum hydroxide (Al(OH)3), which changed the flocculation mechanism from charge neutralization and complexing adsorption to hydrogen bond interaction. Additionally, both Al13 and Al30 showed higher binding capacity for proteins and polysaccharides in EPS than monomeric aluminum and Al(OH)3. Al13 and Al30 coagulation changed the secondary structure of proteins in EPS, which caused a gelation reaction to increase molecular hydrophobicity of proteins and consequently sludge dewaterability. This study provided a guidance for optimizing the hydroxy-aluminum flocculation conditioning of sludge with high solution alkalinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号