首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
基于OMI卫星遥感反演的对流层甲醛柱浓度资料,对2005—2016年四川盆地对流层甲醛柱浓度的时空分布特征及其影响因素进行了分析.结果表明,12年间甲醛柱浓度年际变化总体呈上升趋势,年均增长率为1.17%.12年间甲醛柱浓度具有波动性,年均最低值和年均最高值分别出现于2005年和2012年.2005—2008年四川盆地甲醛柱浓度相对较低;2011年对流层甲醛柱浓度达到最大且高值区范围最大,2012年后浓度逐渐降低.四川盆地甲醛柱浓度季节变化表现为夏季春季秋季冬季.一年之中,月均甲醛柱浓度最小值基本出现在每年的11—12月,最大值则出现在6—8月.甲醛柱浓度空间分布的高值区主要分布在盆地内西南部的成都平原地区,低值区则多处于人为源排放较低的重庆东北部山区.能源消耗、生产总值及机动车保有量与对流层甲醛柱浓度具有显著的正相关关系.工业源、居民源和交通源排放对甲醛柱浓度具有重要贡献.四川盆地独特的地形及区域内风场对甲醛的扩散也有重要影响.  相似文献   

2.
利用臭氧监测仪(OMI)卫星反演的甲醛柱浓度产品,探讨了2005—2016年间华北五省区域对流层甲醛柱浓度的时空分布变化特征及相关的影响因子,结果表明:近12年对流层甲醛柱浓度整体呈现上升趋势,2005—2011年甲醛柱浓度呈逐渐升高趋势,最高增长达32.24×1013mole·cm~(-2),且高值区逐渐扩大.空间分布上高值区整体分布在北京、天津及周围区域,低值区分布在河北的北部、河南的南部和山东的东部区域;2012—2016年甲醛柱浓度波动较小,呈下降趋势.12年中,每年的2—4月份甲醛柱浓度出现最小值,6—8月份甲醛柱浓度出现最大值,而2005年2月份甲醛柱浓度值最小,2011年7月份甲醛柱浓度值最大.四季对流层甲醛浓度水平:夏季秋季春季冬季.风向会影响甲醛浓度的扩散方向,气温的增加导致甲醛柱浓度的升高.但12年间区域生产总值的提高、汽车保有量增加和农业秸秆焚烧是影响甲醛柱浓度增加的主导因素.  相似文献   

3.
为明确宁夏回族自治区(简称“宁夏”)大气中甲醛的含量及分布,基于OMI遥感反演数据,分析了2006—2015年宁夏甲醛柱浓度的时空分布,同时选取工业产值、机动车保有量、煤炭消耗量以及气温、地形地貌和风向等人为和自然因素进行相关性分析.结果表明:研究区内2006—2015年甲醛柱浓度整体呈上升趋势,年均增速为1.078×1015 molec/(cm2·a),其中2006—2011年逐年增大,2012—2015年呈波动上升趋势,并于2015年达到近10年的最高值;甲醛柱浓度季节性特征为夏季>冬季>秋季>春季;宁夏甲醛柱浓度月均值变化趋势整体上呈“W”型.空间上甲醛柱浓度高值区主要分布在宁夏中东部及南部地区,而北部及西部地区甲醛柱浓度相对较低.在人为因素中煤炭消耗量与甲醛柱浓度的相关性最高,相关系数达到0.88;在自然因素中甲醛柱浓度与气温相关系数达到0.63,地形地貌和风向对甲醛污染区域的分布有一定影响.研究显示,人为因素是影响宁夏甲醛柱浓度的主要因素.   相似文献   

4.
基于2005—2015年OMI反演的甲醛柱浓度月均数据,对中国及境内典型城市群甲醛柱浓度时空变化及影响因子进行了分析.结果发现,甲醛柱浓度高值区集中在京津冀中南部、山东西部、河南北部、江浙沪、珠三角、湖北东部、湖南东部、广西、四川与重庆交界.2005—2015年中国甲醛柱浓度总体呈上升趋势,其中,京津冀地区增长趋势最明显,江浙沪地区呈略微下降趋势.中国、京津冀及江浙沪地区夏季甲醛柱浓度明显高于其余3个季节,呈明显的周期性变化;2005—2015年中国4个季节甲醛柱浓度均呈增加趋势,京津冀地区除夏季外其余3个季节也呈增加趋势,江浙沪和珠三角地区各季节甲醛柱浓度变化趋势不一致.近11年,中国、京津冀和江浙沪地区7月甲醛柱浓度最高,珠三角地区9月甲醛柱浓度最高.京津冀和江浙沪地区甲醛柱浓度月最高值和月最低值之间的差异大于珠三角地区.中国、京津冀、江浙沪和珠三角地区近11年秸秆焚烧与相应甲醛柱浓度呈明显正相关,相关系数为0.84~1.00,表明秸秆焚烧是影响近11年甲醛柱浓度变化的重要因子.尽管有些区域季节温度与相应甲醛柱浓度呈负相关,但温度总体也是影响中国及这3个典型城市群甲醛柱浓度变化的另一个重要因子,京津冀地区尤其明显.月平均温度与相应甲醛柱浓度的相关系数为0.52~0.85.人口、民用汽车保有量和国内生产总值与中国、京津冀、江浙沪和珠三角地区相应甲醛柱浓度相关系数均低于0.60.影响因子分析结果暗示控制秸秆焚烧和减少温室效应是降低我国甲醛柱浓度的重要途径.  相似文献   

5.
基于OMI卫星遥感反演数据,对珠江三角洲地区2009年~2016年对流层甲醛柱浓度时空分布特征及其影响因素进行研究.结果表明,珠江三角洲甲醛柱浓度时间变化特征为:8年来呈波动变化趋势,年均值为13.11×1015 molec/cm2,最低值出现于2012年,最高值出现于2016年;最大降低率为5.8%,最大增长率为6.3%.每年夏季最高,冬季最低,大小依次为夏季 > 秋季 > 春季 > 冬季,8a来96个月甲醛月际变化幅度较大,呈单峰结构,其中每年6月最高;空间变化特征为:甲醛柱浓度值由西北往东南递减,其中以肇庆东北大部、佛山北部和广州西部组成高值区分布中心,以佛山中南部、广州东南半部和江门西北半部组成三级次高级分布区,以惠州、东莞、深圳、中山、珠海和江门等珠江三角洲近海岸地区为一二级低值浓度区;影响因素中气温与气压等气象因素对HCHO的生成和分布有着促进作用,植被对HCHO的产生有一定的贡献,甲醛柱浓度的变化与汽车保有量、地区生产总值等经济发展要素呈现正相关关系,能源消耗总量与工业废气排放总量的增加与甲醛柱浓度增长密切相关,人为因素是甲醛柱浓度变化的主要原因.  相似文献   

6.
基于OMI数据的兰州地区对流层甲醛时空变化研究   总被引:1,自引:0,他引:1  
基于OMHCHO遥感数据产品,对兰州地区2006—2016年对流层甲醛柱浓度的时空分布进行了分析,并对与其排放相关的因素进行了探讨,结果表明:2006—2016年对流层甲醛柱浓度整体呈上升趋势,其中2006—2011年甲醛柱浓度增加迅速,最大增长率为21.0%,2012—2016年甲醛柱浓度平缓波动上升,11年中年均增长率为5.4%;空间上甲醛柱浓度整体呈现由兰州市区西部及与其相邻的永登县部分区域向周边区域递增的趋势,2006—2011年表现为浓度级的增加和区域的扩大,2012—2015年浓度级及其区域基本不变,2016年在东南部出现高值甲醛柱浓度区;每年的最高值出现在6—8月份,11年中最大的柱浓度值出现在2011年的7月份,最低值基本出现在2—4月份,11年中最低的柱浓度值出现在2006年的2月份;四季对流层甲醛柱浓度水平为:夏季冬季秋季春季;影响因素中气温和风向对大气中甲醛的生成和分布有着促进作用,兰州地区生产总值及各产业增加值,尤其是工业产值和机动车保有量的增加,与甲醛柱浓度升高密切相关,这些人为因素是对流层中甲醛柱浓度变化的主要原因.  相似文献   

7.
基于Aura-OMI HCHO数据,研究川渝地区2009—2017年甲醛柱浓度变化及影响因素.结果表明:9年间川渝地区甲醛浓度变化总体较为平稳,与全国其他地区相比,浓度均值较低.年变化中,四川省甲醛浓度整体高于重庆市,川渝两地的年均最高值分别出现在2011年和2012年,且2015年重庆出现最大下降速率.整个研究区在最高值变化中,1月、2月及11月出现极高值.9年间甲醛浓度整体先上升后下降,浓度等级二级一级三级其他级别,绝对高值集中分布在康定和雅安交界一带,季节变化呈现春季秋季夏季冬季的规律,与全国其他地区夏季最高有所不同.稳定性方面,研究区中部偏西波动较大,东西两部较为稳定,康定和雅安交界处为高波动区,川西西部、川东平行岭谷和重庆为低波动区,其他地区为中等波动区.地形、气候和风向等自然因素的综合作用对甲醛浓度值的大小及空间分布贡献极大,自然地理条件尤其与极端高值高且集中的特点关系密切.社会经济因素中,生产总值增长速度和能源消费总量增长率与四川省和重庆市两地的甲醛浓度变化正相关关系较强,木材加工及草制品业与之负相关关系较强,而纺织业、化学原料和化学品制造业、石油和核燃料加工业只与四川省甲醛浓度有较强的负相关性,重庆相对较弱.  相似文献   

8.
辽宁省近12年对流层甲醛柱浓度时空变化及其影响因素   总被引:2,自引:0,他引:2  
基于OMI遥感反演的对流层甲醛柱浓度资料,研究了辽宁省2005—2016年对流层甲醛柱浓度的时空分布特征,并分析了对流层甲醛柱浓度的主要影响因素.结果表明:近12年辽宁省对流层甲醛柱浓度整体上波动较大,2005—2013年逐渐增大,平均增速为0.74×1015molec·cm-2,空间分布上整体表现为低值区主要分布在辽西山地丘陵地区,高值区分布在沈阳以东大部分地区,浓度在12×1015~13×1015molec·cm-2之间;2005—2008年辽宁省甲醛污染相对较轻,对流层甲醛柱浓度整体多在3级水平以下;2009—2013年之间,对流层甲醛柱浓度的3级分布区域逐渐缩小,4级分布区域不断扩大,并在2010年出现5级水平污染区域且于2013年达到最大.春季各个区域对流层甲醛柱浓度相对于其它季节较低,夏季各个地区对流层甲醛柱浓度值整体上高于其它季节,以4级及5级水平污染为主,秋、冬季各个区域的对流层甲醛柱浓度值分布居于春、夏两季之间.辽宁省对流层甲醛柱浓度的月变化特征大致符合正弦曲线分布特征,即对流层甲醛柱浓度自1月不断上升,于6月达到峰值后又不断下降.能源消耗及工业生产与大气中甲醛的浓度的变化息息相关,人口数量及生产总值与对流层甲醛柱浓度也具有显著的正相关关系.高温利于甲醛的扩散和挥发,辽宁省独特的地形地理位置对甲醛的扩散与传播产生影响.  相似文献   

9.
广东省对流层HCHO柱浓度时空动态分布及影响分析   总被引:1,自引:0,他引:1  
本文基于OMI卫星遥感反演数据,结合趋势分析、残差分析及Hurst指数,对广东省2009—2018年对流层甲醛柱浓度时空分布特征进行了分析,并结合NDVI、工业总产值、汽车保有量等因素,进一步探究了广东省自然和社会要素结构变化与甲醛柱浓度变化的关系.结果表明,广东省近10年的甲醛柱浓度均值为15.365×1015 molec·cm-2,处于全国前列水平,且近10年来年际间浓度变化波动较大.研究发现,甲醛柱浓度四季变化较为明显,春季高、夏季低,且季节性增长较为明显,其中,春、秋、冬三季平均增幅达到15.5%;月际变化与季节变化较为一致,受自然因素影响较为强烈.空间变化主要表现为甲醛柱浓度值由西南往东北递增,其中,高值区分布在广东省的中部和东北部地区,低值区分布在南部和西南部地区;残差研究发现,人类活动依然是影响广东省甲醛分布的主要因素,占87.64%,影响因素主要包括规模以上企业数量、工业废气排放等经济发展要素,并与能源消耗总量及工业生产总值的增加密切相关.自然因素如气温、降水、NDVI对甲醛的生成和分布有促进作用.通过Hurst指数可以发现,未来广东省甲醛柱浓度整体呈下降的趋势,但部分地区如东莞、深圳市等地未来有增加的趋势.  相似文献   

10.
利用OMI遥感的甲醛逐日数据、MODIS传感器监测的NDVI数据以及湖南省能源消耗和氮氧化物排放量数据,对2009~2017年湖南省对流层大气中甲醛柱浓度时空变化特征及其影响因素进行了探究。结果表明:湖南省甲醛柱浓度总体空间分布具有西部山区低、北部洞庭湖平原和南部南岭地区高的特征;近九年湖南省甲醛柱浓度时间分布呈先增加后减小的趋势,最高值出现在2012年,最低值出现在2017年;年内甲醛柱浓度值夏季最高,秋季、春季次之,冬季最低,最低值出现在12月,最高值出现于9月;影响因素中地形与风向因素对甲醛柱浓度的空间分布有一定的影响,甲醛柱浓度与温度的相关性较高,降水次之,植被对甲醛的产生有很大的贡献,能源消耗与氮氧化物排放是湖南省甲醛柱浓度变化的重要人为因素。  相似文献   

11.
利用OMI传感器数据,研究黑龙江省2005~2016年对流层甲醛柱浓度时空分布特征,并探究甲醛柱浓度的主要影响因素.结果表明:近12年甲醛柱浓度值整体呈上升趋势,平均增速为0.43×1015(molec×a)/cm2,2005~2013年逐年加剧,2013~2014年小幅回降,2014~2016年趋于平稳;四季甲醛浓度水平为:夏季>秋季>冬季>春季;月均变化趋势符合正弦曲线分布,年内甲醛柱浓度最低值一般出现在2~3月,最高值一般在6~7月;空间整体分布具有明显梯度,呈现“南高北低”状态,高值区主要分布在哈尔滨市、大庆市等南部地区,低值区分布在大兴安岭地区、黑河市等地区;空间浓度变化显著,2005~2008年全省在1~4级水平污染内,2009年起首次出现6级污染,2009~2013年6级水平污染区域扩大,2014年6级水平污染区域明显缩小,2014~2016年以4~6级水平污染为主且分布均匀;甲醛柱浓度分布对地形地貌、风向、气温、降水变化均会产生响应,能源消费、工业生产、汽车保有量、建筑装修、化肥施用等是甲醛柱浓度变化的重要影响因素.  相似文献   

12.
基于臭氧监测仪(OMI)遥感数据获取中国东北三省(黑龙江、吉林、辽宁)2005~2018年的甲醛柱浓度,对东北三省近14年来甲醛的时空分布变化规律以及影响因子进行研究。结果表明:近14年来东北三省的甲醛年平均柱浓度呈先增大再减少,再增大的趋势,最大增长率为14.3%,最大降低率为10.1%;甲醛的月、季平均柱浓度变化具有明显规律性,在每年夏季(6~8月)出现最高值,冬季3月左右出现最低值;甲醛的季平均柱浓度水平为:夏季 > 秋季 > 冬季 > 春季;东北三省的甲醛柱浓度在空间上基本呈南高北低分布,高浓度区域主要集中在中部平原较发达的地区。甲醛柱浓度的影响因子包括自然条件和人类活动两个方面。降水和温度等气象因素是甲醛柱浓度变化的重要影响因素,而地形、植被等自然因素对甲醛的分布有一定的影响。交通运输和工业生产等人类活动对甲醛浓度的区域性变化也有重要贡献。  相似文献   

13.
基于Aura卫星OMI传感器的甲醛逐日数据,开展了2010—2019年粤港澳大湾区对流层甲醛垂直柱浓度的时空变化研究,并应用气象、植被和社会经济数据,对甲醛柱浓度变化的影响因子进行了分析.结果表明:2010—2019年粤港澳大湾区甲醛柱浓度呈波动起伏的变化特征,季节均值变化趋势与年度均值变化趋势相似,秋季季节浓度均值最高,其后依次为春季、夏季、冬季;在空间上,2010—2019年甲醛柱浓度均呈现自西北向东南逐渐降低的趋势,在甲醛柱浓度变化趋势上,粤港澳大湾区大部分区域呈现缓慢增加的趋势;针对不同土地覆盖类型,春季,绿地上空甲醛柱浓度高于建筑用地与耕地,夏、秋、冬季,建筑用地上空甲醛柱浓度略高;在空间分布稳定性上,受地形、土地覆盖类型和气象条件影响,西北部稳定性较强,南部珠江入海口处稳定性较弱;自然因子和人为因子对甲醛柱浓度的增长都有一定的贡献,其中,生产总值、汽车保有量、能源消耗量等人为因子对甲醛柱浓度的影响更为显著.  相似文献   

14.
运用OMI卫星遥感资料对河南省2005~2018年NO2柱浓度的时空分布进行分析,并结合国家大气污染防治政策的实施,研究了2013年之后河南省NO2柱浓度的变化特征.结果表明,河南省NO2柱浓度的空间分布为东北高、西南低,高值和低值中心分别位于安阳-新乡-焦作一带(>18.0×1015molec/cm2)和洛阳-三门峡-南阳市交界(4.0~8.0)×1015molec/cm2.从季节变化来看,冬季NO2柱浓度高于春夏季,冬季高值中心的浓度较春夏高50%~70%.在2011年前,河南省NO2柱浓度不断上升,北部较南部增速快.2011年后全省NO2柱浓度明显下降,焦作-新乡-安阳一带下降最快,主要污染物总量减排和大气污染防治行动计划的实施有效促进了浓度的下降.《大气污染防治行动计划》实施后,与位于京津冀大气污染传输通道的城市相比,传输通道外的城市NO2柱浓度下降速度慢甚至略有增长,应进一步加大其大气污染防治力度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号