首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
针对垃圾填埋场渗滤液生物脱氮高耗能的问题,通过对A/O/N工艺处理垃圾渗滤液进行短程硝化反硝化调试,对溶解氧(DO)、污泥浓度(MLSS)、污泥龄(SRT)、混合液回流比、pH、碱度进行定性定量分析,研究了不同条件下垃圾渗滤液生物处理阶段COD、氨氮及总氮去除效果,探讨了影响亚硝酸盐氮积累的因素。结果表明,好氧池低溶解氧能成功启动短程硝化,垃圾渗滤液稳定实现短程硝化反硝化脱氮。运行条件为:O反应器DO浓度0.5~0.8 mg·L~(-1),N反应器DO浓度1.5~2.2 mg·L~(-1),MLSS 3 500~4 500 mg·L~(-1),污泥龄9~13 d,混合液回流比1 100%,N反应器pH 7.6~8.2,N反应器碱度1.1 g·L~(-1)。短程硝化调试后,硝化阶段亚硝化率稳定在85%以上,COD、氨氮及总氮去除率分别达95%、98.6%、94.2%以上,节省30%碳源量和20%曝气量。  相似文献   

2.
高浓度氨氮废水同步硝化反硝化性能研究   总被引:8,自引:0,他引:8  
利用序批式反应器研究了溶解氧浓度和进水碳氮比对高浓度氨氮废水脱氮性能的影响.结果表明,溶解氧浓度降低实现了短程同步硝化反硝化,并提高了反应器脱氮效率.反应器运行经历了外部碳源的摄取、PHB储存、PHB有氧氧化和同步硝化反硝化作用,PHB作为同步硝化反硝化过程中反硝化的电子供体.  相似文献   

3.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明,当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L~(-1),COD值为4 000~5 000 mg·L~(-1)时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m~3·d)~(-1)、总氮去除率可达93.1%(出水TN=176.3 mg·L~(-1))、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中NO_x~--N浓度为154.5 mg·L~(-1),仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L~(-1))。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水NH_4~+-N、NO_2~--N、NO_3~--N平均浓度分别为1.9、0.6、9.7 mg·L~(-1),TN≤15 mg·L~(-1),进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

4.
采用序批式间歇反应器(SBR)处理生活污水,温度控制在(25.0±0.5)℃,研究好氧曝气与缺氧搅拌时间比(间歇曝气比)分别为30min∶30min(A模式)和40min∶20min(B模式)对亚硝酸盐氮积累、污泥性能参数、反应速率(比氨氮氧化速率、比硝酸盐氮产生速率、比亚硝酸盐氮产生速率)、氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的影响。A模式下运行64个周期时,出水亚硝酸盐氮质量浓度为19.04mg/L,亚硝酸盐氮积累率高达99.21%;B模式下运行75个周期时,出水亚硝酸盐氮质量浓度为19.42mg/L,亚硝酸盐氮积累率高达95.47%;研究表明缺氧时间所占比例越大越有利于短程硝化的实现。在实现短程硝化过程中,A模式在38个周期之后AOB活性超过NOB活性;B模式在34个周期之后AOB活性超过NOB活性。  相似文献   

5.
碳氮比对低温投加介体生物反硝化脱氮的影响   总被引:1,自引:0,他引:1  
污水的生物脱氮效果受低温抑制,投加氧化还原介体有利于反硝化过程。采用规格相同的序批式反应器,使用人工配制硝酸盐废水和经过驯化的活性污泥,考察了不同碳源浓度(碳氮比)对低温(10℃)投加氧化还原介体1, 2-萘醌-4-磺酸(NQS)污水生物反硝化脱氮过程的影响。结果表明:当碳源浓度(以COD计)为150~400mg·L~(-1) (碳氮比为1.8~4.7)时,脱氮效率随碳氮比的升高而升高;当碳源浓度为400~550 mg·L~(-1) (碳氮比为4.7~6.5)时,脱氮效率随着碳氮比的升高而降低;当碳源浓度为400 mg·L~(-1) (碳氮比为4.7)左右时效果最好,总氮去除率最高为64.7%。对于脱氮速率,介体强化脱氮速率随着碳氮比的升高而升高。同时,探讨了投加介体污水生物反硝化脱氮的机理,发现投加介体降低了体系的氧化还原电位(ORP),有利于反硝化脱氮反应的进行。  相似文献   

6.
针对纤维素产乙醇废水高有机物、高氨氮、难降解的特点,运用短程硝化反硝化脱氮工艺,基于序批式活性污泥反应器(SBR)的调试运行,研究反应器运行方式对COD去除和脱氮效能的影响,为日后纤维素乙醇废水处理的工程化提供借鉴。结果表明:通过控制DO(0.5 mg·L~(-1))、p H(7.6~8.5)和投加碳源等条件,可实现亚硝酸盐氮的积累和转化,最终三氮去除率稳定在70%以上;通过投加不同碳源对比实验,发现乙酸钠作为反硝化外加碳源比葡萄糖具有更高的效率;厌氧工艺处理过的纤维素乙醇废水经短程硝化反硝化工艺处理后,COD去除率维持在20%上下,表明废水可生化性极低,已不适应生物法处理,须利用化学氧化法才能进一步去除;通过周期实验,发现硝化阶段碱度过量对短程硝化进程影响并不明显,相反充足的碱度是保证硝化反应进行的必要条件。  相似文献   

7.
采用A/O-CSTR工艺处理高氨氮污泥脱水液。进水氨氮浓度浓度约为375 mg/L,C/N比小于1.0,反硝化碳源明显不足。A/O反应器完成短程硝化反应,CSTR定期投加初沉污泥作为碳源进行反硝化。两者联合达到总氮去除的目的。实验研究短程硝化反应的启动过程,以及CSTR出水回流对短程硝化和系统脱氮效果的影响。实验结果表明系统具有良好的硝化反硝化效果。A/O反应器亚硝酸盐积累率迅速提高并稳定在90%以上。CSTR有效利用初沉污泥实现了稳定的反硝化。出水回流有利于提高总氮去除率,在回流比为200%时,系统平均总氮去除率达到85%以上。  相似文献   

8.
针对污水处理厂二级出水深度脱氮的需求,设计了以木屑与硫磺颗粒为填料(质量比1:1)的反硝化生物滤池,对碳氮比失衡的污水处理厂二级出水进行深度脱氮处理。结果表明,木屑释放碳源速率在10 d之后趋于稳定,COD中(40.6±10.0)%是反硝化菌可直接利用的VFA。反硝化生物滤池运行的最佳HRT为10 h,在此条件下,进水硝酸盐(以N计)浓度为30 mg·L~(-1)时,出水硝酸盐浓度最低为11.5 mg·L~(-1),亚硝酸盐(以N计)浓度最低为1.4 mg·L~(-1),反硝化生物滤池内未发生硝酸盐异化还原(DNRA)作用,出水无氨氮积累。出水SO42-浓度最高为73.8 mg·L~(-1)。反硝化生物滤池运行稳定后,出水中COD未超过30 mg·L~(-1),木屑释放的碳源与异养反硝化过程消耗的碳源持平,经反硝化生物滤池深度处理的出水中无过量残留有机物。出水pH稳定在6.9~7.4范围内,反硝化生物滤池无需外加碱类物质。  相似文献   

9.
通过连续流实验研究了低浓度乙酸盐诱导下厌氧氨氧化颗粒污泥与异养反硝化菌的耦合脱氮性能,同时采用批试实验考察耦合系统中的氮素转化及去除途径。结果表明:采用低浓度乙酸盐对厌氧氨氧化颗粒污泥进行驯化,可以实现厌氧氨氧化与异养反硝化的高效耦合脱氮。系统在稳定时期,进水NH_4~+-N为30~40 mg·L~(-1)、NO_2~--N为45~55 mg·L~(-1)、CH_3COONa为60~80 mg·L~(-1),NH_4~+-N、NO_2~--N和TN的去除率分别为93.84%、94.62%和86.46%。耦合系统中的颗粒污泥同时存在厌氧氨氧化特性、硝化特性和反硝化特性。颗粒污泥表现出良好的厌氧氨氧化特性,总氮去除速率为12.46 mg·(g MLSS·h)~(-1)。系统中存在的硝化细菌可以消耗进水中的溶解氧从而缓解溶解氧对ANAMMOX菌的抑制,其中AOB活性高于NOB活性。系统中颗粒污泥对硝氮的反硝化作用强于对亚硝氮的反硝化作用,亚硝氮反硝化和硝氮反硝化的降解速率分别为1.89和3.59 mg·(g MLSS·h)~(-1)。当亚硝氮和硝氮同时存在时,反硝化菌优先将硝氮还原成亚硝氮。  相似文献   

10.
为了实现主流的短程硝化反硝化和厌氧氨氧化,设计了基于pH-DO和阀ON-OFF间歇曝气的在线控制系统,搭建了中试级别的短程硝化SBR,在高DO条件下基于城市生活污水恢复种泥活性后,加入反硝化稳定短程,最后接入厌氧氨氧化滤池实现全过程自养脱氮。将脱氮率、NO-2-N积累率等作为考察指标,研究了系统的启动过程和稳定性。结果表明:控制SBR(sequencing batch reactor)中DO=2~2.5 mg·L~(-1)、HRT=8~10 h、SRT=4~5 d、T=25℃,启动恢复3个月后,系统能保持90%以上的NO-2-N积累率、NO-2-N/NH+4-N=0.96±0.18;短程硝化反硝化能达到50%左右的NH+4-N去除率,60%左右的TIN去除率;短程硝化接厌氧氧氨氧化能保证90%左右的NH+4-N去除率和TIN去除率,出水达一级A标准。由实验结果分析,系统在高DO条件下能恢复短程硝化污泥的活性,基于pH-DO和阀ON-OFF间歇曝气的在线控制系统稳定性高,能保证短程硝化系统的稳定运行;恢复活性后,后接厌氧氨氧化滤池能实现中试级别的全过程自养脱氮。  相似文献   

11.
pH和C:N对厌氧氨氧化耦合短程反硝化脱氮性能的影响   总被引:1,自引:0,他引:1  
以低DO和逐渐降低亚硝态氮浓度的方式运行厌氧氨氧化(ANAMMOX)上流式污泥床(AUASB)反应器,第57天实现稳定运行,氨氮去除率保持在85%以上,采用高通量测序技术分析发现ANAMMOX污泥中主要功能菌转变为Candidatus kuenenia,丰度为8.85%,好氧氨氧化菌(AOB)Nitrosomonas的丰度为1.48%,短程反硝化菌Thauera丰度为0.66%。将AUASB反应器中污泥接种在ANAMMOX序批式反应器(ASBR)后,通过外加有机碳源的方式使ASBR拥有了短程反硝化的能力,然后研究了不同C:N(质量比)和不同pH条件下亚硝态氮积累情况和氮素转化特性,结果表明:当C:N为3.2:1.0时,亚硝态氮积累率最高为84%,但有部分亚硝态氮被还原。当pH为7.8时,ANAMMOX菌活性最高,氨氮去除率为95%。扫描电子显微镜(SEM)观察到ANAMMOX菌为球状,短程反硝化菌为短杆状。  相似文献   

12.
分别以厌氧污泥、脱氮硫杆菌菌悬液和厌氧污泥并添加脱氮硫杆菌菌悬液为接种物,以硫化物和硝酸盐为进水基质,考察不同接种物条件下,各反应器的硫化物氧化特性、反硝化特性、生化反应机理及微生物特性。结果表明,在无菌条件下,硫化物不能被硝酸盐化学氧化。接种脱氮硫杆菌菌悬液的2#反应器的硫氧化速率为1.98 g S/(m3.h),停留24 h硫化物的去除率高达97%,脱硫能力最强,该接种条件下以硝酸盐氧化硫化物为主反应,优势菌为杆菌,进水的NO3--N/S应控制在0.4以下,可以实现高效生物脱硫。接种厌氧污泥的1#和3#反应器的脱氮效果比2#反应器好,停留时间为24 h时,硝酸盐的平均去除率为96%。单独接种厌氧污泥的1#反应器的硫氧化速率为1.78 g S/(m3.h),其优势菌为球菌,该接种条件下以硝酸盐氧化硫化物和硝酸盐氧化单质硫为主反应,进水的NO3--N/S应控制在0.8左右。以厌氧污泥联合脱氮硫杆菌为接种物时,硫氧化速率为1.71 g S/(m3.h),反应器以硝酸盐氧化硫化物、硝酸盐氧化单质硫以及异养反硝化为主反应,驯化后优势菌为球形、卵圆形和短杆状,应控制进水NO3--N/S为1.2,可以实现同步脱硫反硝化,该工艺既可以用于含硫废水的处理,也可以用于C/N低的硝酸盐废水的处理。  相似文献   

13.
微生物燃料电池(MFC)可在阴极实现反硝化、短程反硝化和同步硝化反硝化并产生电能,但在MFC阴极实现同步短程硝化反硝化的研究尚未见到报道。为了探讨MFC阴极同步短程硝化反硝化工艺的性能,将双室曝气阴极MFC与A/O脱氮工艺结合处理人工模拟低碳氮比废水。通过静置运行15 d使得MFC阴极室亚硝态氮得以积累,氨氧化菌得以富集。随即改为连续运行后第21天成功启动同步短程硝化反硝化MFC;阴极出水氨氮浓度为0.3 mg/L,亚硝态氮浓度为15.9 mg/L,硝态氮浓度为0.6 mg/L,亚硝化率达到95%以上,阴极电极自养反硝化去除率达到50%以上,COD去除率达到85%以上。结果表明,将MFC与同步短程硝化反硝化工艺结合,通过阴极室中氧气得电子获得高p H,可以强化同步短程硝化反硝化工艺,完成生物脱氮的同时回收电能,并具有减少外加碱度的优势。  相似文献   

14.
基于SBBR的单级自养脱氮快速启动   总被引:2,自引:0,他引:2  
以普通活性污泥为接种污泥,采用人工配制无机氨氮废水进行单级自养脱氮工艺快速启动研究。启动过程经历了污泥适应期、部分短程硝化选择期以及单级自养脱氮实现期3个阶段。经过29 d的培养驯化,通过控制游离氨的方法实现了部分短程硝化。当出水中亚硝酸盐积累率达到60%左右时,立即将序批式生物膜反应器(SBBR)由连续曝气改为间歇曝气,间歇曝气使得厌氧氨氧化菌(AAOB)的富集与亚硝酸氧化菌(NOB)的淘汰同时进行,并且避免了高浓度亚硝酸盐对AAOB的抑制作用,从而实现了单级自养脱氮的快速启动。实验仅用50 d成功启动了SBBR单级自养脱氮工艺,总氮容积去除负荷达到0.173 kg N/(m3·d),氨氮的平均去除率达到98.68%,总氮的平均去除率达到80.87%。成功启动之后,反应器内只有少量的悬浮污泥,大部分的污泥都附着在填料上,污泥颜色呈褐色,而反应器内壁及出水管上附着的污泥呈浅砖红色,表明反应器内富集了大量的AAOB。  相似文献   

15.
为了探讨固定化包埋填料高氨氮负荷下短程硝化的稳定运行研究,以固定化技术包埋一定量硝化菌填料为载体,并利用序批次反应器进行处理人工配置的氨氮废水实验,该实验研究了实现短程硝化影响因素DO、有机物的控制范围,驯化期间,分别将温度、pH值、DO控制在(31±1)℃、7.8~8.2、1.8~2.0 mg·L~(-1)范围内,进水有机物浓度始终保持在50 mg·L~(-1)以下,体积填充率为15%,采用高游离氨(3.03~14.18 mg·L~(-1))对NOB产生抑制作用,使活性填料中的AOB成为优势菌群,通过历时55 d的培养实现了该填料短程硝化的启动及稳定运行,结果表明,进水氨氮浓度保持200 mg·L~(-1)左右,氨氮去除速率高达28.29 mg NH+4-N·(L·h)~(-1)的同时,氨氮的去除率97%,亚硝酸盐积累NO_2~--N/NO_x~--N85%,实验同时还考察了活性填料的抗冲击负荷能力与单个周期内短程硝化运行特征。  相似文献   

16.
采用移动床生物膜反应器(MBBR)处理已回收磷后的实际污泥水,在进水平均氨氮浓度为167.51 mg·L~(-1)、HRT为22.24 h、DO为0.5 mg·L~(-1)和温度为24~26℃的条件下实现了一体式短程硝化-厌氧氨氧化过程的耦合,对氨氮和总无机氮的最大去除率可达96%和79.7%。但是,一体式反应器受DO浓度影响较大,维持稳定的DO浓度对于系统的氮去除非常重要。荧光原位杂交(FISH)及高通量测序结果表明,MBBR的生物膜及活性污泥中Nitrosomonas菌分别占总菌数的10.46%和21.46%,厌氧氨氧化菌的优势菌种Candidatus Kuenenia在生物膜和活性污泥中分别占总菌数的4.13%和0.71%。因此,MBBR中活性污泥主要完成亚硝化,生物膜主要完成厌氧氨氧化,常温条件下,两者在一个反应体系中共同完成了对污泥水中氮的高效自养脱除。以上结果表明了一体式反应器处理实际污泥水的可行性,可为该工艺在实际工程中的应用提供参考。  相似文献   

17.
李恩超 《环境工程学报》2019,13(10):2461-2467
针对焦化纳滤浓水中高总氮的问题,采用序批式反应器(SBR)对纳滤浓水进行了生物脱氮实验,并对其反硝化脱氮效果和反应器中微生物菌群特征开展了研究。结果表明,在SBR系统稳定运行期间,总氮和硝态氮的平均去除率分别为58.2%和93.8%,出水中硝态氮平均浓度为2.0 mg·L~(-1)。微生物菌群结构分析表明:变形菌门和拟杆菌门为纳滤浓水反硝化过程中的核心菌门,相对丰度之和为90.0%~96.0%;反硝化功能基因定量检测表明,在纳滤浓水反硝化过程中,亚硝酸盐还原酶nirS的拷贝数高于亚硝酸盐还原酶nirK约1~2个数量级,这说明nirS在亚硝酸转化为一氧化氮过程中起到了重要作用。SBR工艺处理焦化纳滤浓水具有良好的效果,为解决高盐水生物脱氮提供了新的途径。  相似文献   

18.
以污水处理厂二沉池回流污泥为接种污泥,在序批式活性污泥反应器(SBR)中通过调整运行条件诱导培养反硝化聚磷菌(DPB)颗粒污泥,实现反硝化过程和聚磷过程的有效结合。经过3个阶段的培养,DPB颗粒污泥对COD、TP、氨氮的去除率均达90%以上,系统具备缺氧条件下同步反硝化聚磷的能力。获得的DPB颗粒污泥平均粒径为1.0~2.0mm,平均沉速为50~70m/h,具有良好的物理特性和沉降性能,有利于减小污泥处理负荷,提高脱氮除磷效率。DPB颗粒污泥胞外聚合物(EPS)含量明显提高,其中多糖和蛋白质分别为从原接种污泥的21.58、11.22mg/g提高到56.32、34.15mg/g;搁置30d后的DPB颗粒污泥,可在SBR重启30d内恢复原有活性及反硝化聚磷效果。  相似文献   

19.
阐述了污水低氧脱氮的基本原理,即抑制或去除亚硝酸盐氧化菌(NOB),同时保留氨氧化菌(AOB),并保持其活性;探讨了污水低氧脱氮实现途径;详细介绍了几种典型的污水低氧脱氮工艺(短程硝化(SHARON)工艺、厌氧氨氧化(ANAMMOX)工艺、好氧反氨化(DEMON)工艺、低氧自养硝化反硝化(OLAND)工艺、甲烷营养型硝化反硝化工艺和亚硝酸盐型完全自养脱氮(CANNON)工艺)的应用研究进展;最后对污水低氧脱氮处理工艺的工程运用进行了展望.  相似文献   

20.
杨宏  苏姗 《环境工程学报》2019,13(4):765-772
为开发更多的硝化填料应用形式,并为填料的实际应用提供参数借鉴,用人工配水条件下活性恢复的硝化生物活性填料直接处理市政污水,研究了填料填充方式、填充比例以及DO浓度等因素对填料氨氧化速率与装置中COD浓度的影响。结果表明,采用填料分散的填充方式,在填充率为12%、DO浓度为4~5 mg·L~(-1)条件下,填料的最大氨氧化速率为30.2 mg·(L·h)~(-1),高于传统的活性污泥法。填充率与氨氧化速率整体上呈正相关的关系,在一定程度上可通过提高填充率进一步提高填料氨氧化速率。通过填料冲洗,可阻止装置中异养菌生长,利于市政污水中COD的存留。利用硝化填料对市政污水进行直接硝化的填料应用形式,可实现在保持较优氨氧化速率的前提下为后续反硝化存留碳源,减少水处理流程中的污泥产量,具有一定可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号