首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
为了解厌氧/好氧/缺氧(A/O/A)运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步短程硝化反硝化(SPND)耦合,并后置短程反硝化的脱氮除磷特性,以低C/N(≤4)城市污水为处理对象,通过优化曝气量和缺氧时间,实现了低C/N城市污水的深度脱氮除磷.结果表明,当好氧段曝气量由1.0 L·min-1降至0.6 L·min-1,缺氧时间为180 min时,出水PO3-4-P浓度由0.06 mg·L~(-1)降至0,出水NH+4-N、NO-2-N和NO-3-N浓度分别由0.18、18.79和0.08 mg·L~(-1)逐渐降低至0、16.46和0.05 mg·L~(-1),TN去除率由72.69%提高至77.97%;随着曝气量的降低,SPND现象愈加明显,SND率由19.18%提高至31.20%;此后,当缺氧段时间由180 min逐渐延长至420 min,出水PO3-4-P、NH+4-N和NO-3-N浓度分别维持在0、0和0.03 mg·L~(-1)左右,出水NO-2-N低至3.06 mg·L~(-1),SND率达32.21%,TN去除性能逐渐提高,TN去除率高达99.42%,实现了系统的深度脱氮除磷.  相似文献   

2.
以低C/N城市污水为处理对象,采用延时厌氧(180min)/好氧运行的SBR反应器,通过调控曝气量[单位体积的反应器在单位时间内通过的气体的体积,单位为L·(min·L)~(-1).由0. 125 L·(min·L)~(-1)逐渐降低至0. 025 L·(min·L)~(-1)]和好氧时间(由3 h逐渐延长至6 h),考察了SPNDPR系统的深度脱氮除磷性能.结果表明,当曝气量为0. 025 L·(min·L)~(-1)、好氧时间为6 h时,SPNDPR系统出水NH_4~+-N、NO_2~--N、NO_3~--N和PO_4~(3-)-P浓度分别为0、8. 62、0. 06和0. 03 mg·L~(-1);出水TN浓度约为9. 22 mg·L~(-1),TN去除率高达87. 08%.当曝气量分别由0. 125 L·(min·L)~(-1)降至0. 100 L·(min·L)~(-1)和由0. 100L·(min·L)~(-1)降至0. 075 L·(min·L)~(-1)时,系统硝化速率均能恢复并稳定维持在0. 16 mg·(L·min)~(-1)左右.但曝气量继续降至0. 050 L·(min·L)~(-1)和0. 025 L·(min·L)~(-1)后,硝化速率分别降至0. 09 mg·(L·min)~(-1)和0. 06 mg·(L·min)~(-1)左右.随着曝气量的降低[由0. 125 L·(min·L)~(-1)依次降至0. 100、0. 075、0. 050、0. 025 L·(min·L)~(-1)]和好氧时间的延长(由3 h延长至6h),SPND脱氮性能逐渐增强,SND率由19. 57%升高至72. 11%,TN去除率逐渐升高(由62. 82%升高至87. 08%).降低曝气量和延长好氧时间后的SPNDPR系统,强化了厌氧段内碳源贮存与好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化等过程的进行,实现了低C/N城市污水的深度脱氮除磷.  相似文献   

3.
为实现低C/N城市污水与含硝酸盐废水的同步处理,采用SBR接种活性污泥,通过合理控制厌氧/缺氧/低氧时间和溶解氧(DO)浓度,实现了反硝化除磷耦合同步硝化内源反硝化(DPR-SNED)系统的启动,并对启动过程中系统的脱氮除磷特性进行了研究.结果表明采用厌氧/低氧的运行方式,控制厌氧时间为3 h,好氧段DO浓度为0. 5~1. 0 mg·L-1,60 d可实现同步硝化内源反硝化除磷(SNEDPR)系统的启动,出水PO_4~(3-)-P浓度0. 5 mg·L-1,系统氮磷去除率维持在90%以上,COD的去除率维持在80%以上,系统SNED率和CODins率分别维持在70%和95%左右;随后改变运行方式,采用厌氧/缺氧/低氧的方式运行,缺氧段前进含硝酸盐废水,45 d可实现DPR-SNED系统的启动,缺氧末PO_4~(3-)-P浓度1. 1 mg·L-1,出水PO_4~(3-)-P浓度0. 5 mg·L-1,系统磷、COD去除率均维持在90%以上,氮去除率维持在88%以上,系统SNED率和CODins率分别维持在62%和90%左右. DPR-SNED系统的成功启动后,厌氧段聚糖菌和聚磷菌对城市污水有限碳源的充分利用和强化储存,可为后续缺氧段及好氧段的脱氮除磷提供充足的内碳源.此外,DPR-SNED系统缺氧段内源短程反硝化的进行保障了系统在低C/N(4)条件下的高效脱氮.  相似文献   

4.
本研究以模拟城市污水和高硝酸盐废水为处理对象,在一个厌氧-缺氧-微曝气运行的SBR反应器内,将短程反硝化工艺(PD,NO_3~-→NO_2~--N)与反硝化除磷工艺(DPR)耦合,并通过联合调控进水C/N比、厌氧排水率和缺氧时间,考察了PD-DPR系统的亚硝酸盐积累特性和除磷性能.结果表明,经过140d,NO_3~-→NO_2~--N转化率(NTR)为80.1%,PO~(3-)_4-P去除率高达97.64%.在厌氧段(180 min),聚糖菌(GAOs)和聚磷菌(PAOs)对污水有机碳源进行充分利用,将其转化为内碳源;缺氧段(150 min),反硝化聚糖菌(DGAOs)和异养反硝化菌(DOHOs)分别进行内源和外源短程反硝化实现NO~-_2-N稳定积累,同时反硝化聚磷菌(DPAOs)进行高效反硝化吸磷;微曝气段(10 min),在不发生硝化反应的前提下,PAOs超量吸磷,提高了系统的除磷性能.系统出水NO~-_2-N/NH~+_4-N为1.31∶1(接近厌氧氨氧化工艺理论值1.32∶1),PO~(3-)_4-P浓度为0.30 mg·L~(-1),COD浓度为12.94 mg·L~(-1).其出水水质可满足与厌氧氨氧化(ANAMMOX)工艺耦合进行深度脱氮的需求.  相似文献   

5.
基于优质碳源提供的CAMBR复合工艺短程硝化-反硝化除磷研究   总被引:10,自引:10,他引:0  
程继辉  吴鹏  程朝阳  沈耀良 《环境科学》2015,36(12):4539-4545
挥发性脂肪酸(VFA)是反硝化除磷过程可以利用的优质碳源,为此本研究结合厌氧折流板反应器(ABR)微生物相分离和膜生物反应器(MBR)出水水质优良的特性,构建了CAMBR复合工艺,并通过优化ABR水力停留时间(HRT)等运行条件以提供优质碳源,实现高效反硝化除磷.研究表明,当ABR的HRT为4.8 h时,可获得充足的VFA作为优质碳源,并实现消耗VFA的量为56.1 mg·L~(-1)的同时获得10.43 mg·L~(-1)的释磷,即释放1 mg磷需要的VFA量为5.38 mg,同时实现12.35 mg·L~(-1)的吸磷,而MBR池的吸磷为1.33 mg·L~(-1).短程硝化除磷过程中,缺氧消耗1 mg PO_4~(3-)-P需要0.62 mg的NO-x-N,吸收1 mg PO_4~(3-)-P所需NO_2~--N的量为1.67~2.04 mg.系统出水水质稳定,COD、TN和溶解性PO_4~(3-)-P的平均去除率分别为91%、84%和93%,出水平均浓度分别为30、7.15和0.55 mg·L~(-1),表明CAMBR复合工艺生在处理生活污水过程中可获得稳定高效的反硝化除磷效果.  相似文献   

6.
在11~14℃低温下,采用A~2/O-BAF系统处理低C/N生活污水,研究了污染物去除特性、反硝化除磷过程中除磷脱氮比例(ΔPO_4~(3-)/ΔNO_3~--N)以及BAF中曝气量和有效填料高度对硝化反应的影响.结果表明,在COD、NH_4~+-N、TN和PO_4~(3-)的平均进水浓度分别为193.1、58.6、60.3和5.1 mg·L~(-1)时,平均出水浓度分别为46.3、2.5、13.4和0.3 mg·L~(-1),达到国家城镇污水处理厂污染物排放标准一级A标准.对ΔPO_4~(3-)/ΔNO_3~--N进行线性拟合,比值分布在0.47~1.75之间;运用正态分布对ΔPO_4~(3-)/ΔNO_3~--N进行数理统计,其均值为1.20,标准差0.29.BAF中曝气量为60 L·h~(-1)和100 L·h~(-1),出水NH_4~+-N浓度小于5.0 mg·L~(-1)时所需填料高度分别为1.8 m和1.0 m;继续增大BAF中曝气量为120 L·h~(-1)时,气水流冲击导致生物膜脱落,造成出水NH_4~+-N大于5.0 mg·L~(-1).  相似文献   

7.
为了解同步硝化内源反硝化系统(SNEDPR)脱氮除磷性能,采用延时厌氧(180 min)/低氧(溶解氧0. 5~2. 0 mg·L~(-1))运行的SBR反应器,以人工配置的模拟废水为处理对象,先采用恒定进水C/N(为10),以实现SNEDPR的启动和聚磷菌(PAOs)的富集培养,再调控进水C/N值(分别为10、7. 5、5和2. 5),考察不同C/N对系统的脱氮除磷性能的影响.结果表明,当进水C/N为10,可实现SNEDPR的启动与深度脱氮除磷,出水PO3-4-P和总氮(TN)浓度分别平均为0. 1 mg·L~(-1)和8. 1mg·L~(-1),PO3-4-P去除率、TN去除率和SNED率平均值分别为99. 79%、89. 38%和58. 0%.当进水C/N由5提高至10时,系统维持良好的脱氮除磷性能,释磷量(PRA)和SNED率分别由16. 0 mg·L~(-1)和48. 0%提高至24. 4 mg·L~(-1)和69. 2%;当C/N为10时,TN和PO3-4-P去除率最高达94. 5%和100%;当C/N为2. 5时,系统失去脱氮、除磷性能,PRA和SNED率仅为1. 36 mg·L~(-1)和10%.在系统稳定运行阶段(C/N为10、7. 5和5),SNED率达85. 9%,出水NH_4~+-N、NO-x-N和PO3-4-P浓度平均为0、8. 1和0. 1 mg·L~(-1).  相似文献   

8.
为了解不同进水C/P条件下同步硝化内源反硝化除磷(SNEDPR)的脱氮除磷特性.以实际城市污水为处理对象,采用延时厌氧(180 min)/低氧(溶解氧0.5~1.0 mg·L~(-1))运行的序批式反应器(SBR),考察了进水C/P(分别为60、30、20、15、10)对系统C、N、P去除特性的影响.结果表明:适当降低进水C/P(由60降至30)有利于提高系统内PAOs竞争优势.当C/P为30时系统除磷性能最高,厌氧段释磷速率(PRR)和好氧段吸磷速率(PUR,以P/MLSS计,下同)分别高达3.5mg·(g·h)-1和4.2 mg·(g·h)-1,出水PO3-4-P浓度均低于0.3 mg·L~(-1),且PPAO,An高达88.1%;但进一步降低进水C/P至10时,PO3-4-P去除率和PPAO,An分别由38.1%和82.4%降低至3.1%和5.3%,PRR和PUR分别仅为0.2 mg·(g·h)-1和0.24mg·(g·h)-1,系统表现出较差的除磷性能.降低C/P对系统COD去除性能没有影响,COD去除率稳定在85%左右.此外,当C/P由60降低至20时,系统硝化性能变差,表现为出水NH+4-N和NO-2-N浓度分别由0和6.9 mg·L~(-1)升高至5.1 mg·L~(-1)和16.2 mg·L~(-1);而当C/P进一步降低至10时,系统硝化性能得以恢复,但亚硝积累特性遭到破坏,表现为出水NH+4-N和NO-2-N浓度逐渐降低为0,但出水NO-3-N浓度由0.08 mg·L~(-1)升高至14.1 mg·L~(-1).SNED率先由62.1%降低为36.4%后又逐渐提高至56.4%.C/P低于15时,有利于提高GAOs的竞争优势,且C/P由20降至10时系统脱氮性能得以恢复,原因在于GAOs内源反硝化作用的增强.  相似文献   

9.
除磷颗粒诱导的同步短程硝化反硝化除磷颗粒污泥工艺   总被引:6,自引:6,他引:0  
李冬  刘博  王文琪  张杰 《环境科学》2020,41(2):867-875
以低C/N比生活污水为研究对象,接种成熟除磷颗粒污泥,通过联合调控好氧时间及曝气强度成功将其诱导成具有同步短程硝化反硝化除磷功能的颗粒污泥,并分析了此过程中系统脱氮除磷特性变化.结果表明,好氧段曝气强度为5L·(h·L)~(-1),在较短曝气时间下(140 min)可实现AOB的富集,但同步硝化反硝化能力难以提高;降低曝气强度为3. 5L·(h·L)~(-1),延长曝气时间(200 min),好氧段氮损增加.根据pH及DO曲线进一步优化曝气时长抑制NO_2~-向NO_3~-转化,优化后系统出水TP 0. 5 mg·L~(-1)和TN 15 mg·L~(-1),可实现氮磷的同步去除.在系统功能由单纯的除磷向同步脱氮除磷转化的过程中,释磷量下降,PAOs在内碳源储存过程中的贡献比例有所下降,但仍占主体地位(60%).批次实验表明,颗粒中可利用NO_2~-为电子受体的DPAOs占绝大部分达52. 43%,其富集减轻了系统的碳源压力,从而改善脱氮除磷效果.  相似文献   

10.
间歇曝气连续流反应器同步硝化反硝化除磷   总被引:4,自引:4,他引:0  
采用连续流反应器处理生活污水,保持厌氧段格室为3格,将缺氧段格室从2格减少至0格,好氧段格室由5格逐渐增加至7格,Run1时对好氧段格室采用连续曝气,Run2~Run4时采用间歇曝气.曝/停比分别为:40 min/20 min、40 min/30min、40 min/40 min,硝化液回流比从150%逐渐减少至0%. Run4时,平均进水COD、NH+4-N、TN、PO_4~(3-)-P浓度分别为259. 34、60. 26、64. 42、6. 10 mg·L-1,出水COD、NH+4-N、TN、PO_4~(3-)-P分别为26. 40、1. 03、5. 84、0. 30 mg·L-1.反应器对氮素的去除量从Run1时的192. 30 mg·h-1逐渐增加至Run4时的244. 00 mg·h-1,相应地去除率从65. 40%逐渐增大至95. 30%;从Run1~Run4,反硝化聚磷菌和聚磷菌的活性分别从36. 05%和38. 20%增大至140. 50%和133. 40%;通过间歇曝气在连续流反应器中实现了同步硝化反硝化除磷脱氮,为污水处理厂提标改造提供参考.  相似文献   

11.
李冬  魏子清  劳会妹  李帅  张杰 《环境科学》2019,40(12):5456-5464
为实现低C/N城市污水的同步脱氮除磷,采用SBR反应器以厌氧/好氧(A/O)为运行方式,在保持总曝气量900 L不变的条件下调整曝气策略[将均匀曝气2. 81 L·(h·L)-1改为先高强度4. 22 L·(h·L)-1后低强度1. 88 L·(h·L)-1的"高/低曝气"和先低强度1. 88 L·(h·L)-1后高强度4. 22 L·(h·L)-1的"低/高曝气"].试验考察了不同曝气策略下系统的脱氮除磷性能及污泥特性.结果表明,高/低曝气下系统的脱氮除磷效果最佳,出水NH_4+-N、NO_2--N、NO_3--N和TP浓度分别为0、0. 15、8. 12和0. 04 mg·L~(-1),总氮(TN)和总磷(TP)去除率分别为78. 33%和99. 19%,同步硝化内源反硝化(SNED)作用明显,SNED率为77. 08%.且相比于均匀曝气,系统硝化速率及反硝化速率均增加,反硝化速率(以N/VSS计)达到整个运行过程中的最大值,为14. 33 mg·(g·h)-1,同时颗粒污泥密实度、沉降性能及稳定性提高,污泥容积指数(SVI)为23. 49 m L·g~(-1).调整曝气策略为低/高曝气后,系统脱氮除磷性能变差,TN和TP去除率均降至最低,分别为51. 26%和58. 32%,但此时系统硝化性能最佳,氨氧化速率和硝酸盐生成速率均达到整个运行过程中的最大值,分别为14. 92 mg·(g·h)-1和7. 50 mg·(g·h)-1,同时颗粒污泥中丝状菌大量繁殖、结构松散、沉降性及稳定性均变差,SVI升至40. 76 m L·g~(-1).故采取高/低阶梯曝气策略有利于AGS系统高效脱氮除磷及提高稳定性.  相似文献   

12.
静置/好氧/缺氧序批式反应器(SBR)脱氮除磷效果研究   总被引:5,自引:1,他引:4  
以静置段代替传统厌氧段,采用后置缺氧方式,考察了静置/好氧/缺氧序批式反应器(SBR)(R1)的生物脱氮除磷(BNR)性能,并与传统厌氧/好氧/缺氧序批式反应器(SBR)(R2)进行对比.两反应器进水乙酸钠、氨氮(NH+4-N)及磷酸盐(PO3-4-P)浓度均分别为350 mg·L-1(以COD计)、40 mg·L-1及12 mg·L-1,水力停留时间(HRT)为12 h.研究结果表明,R1长期运行中磷的去除率与R2相当,分别为92.4%和92.1%,而总氮(TN)去除率则较R2高,分别为83.5%和77.0%.R1静置段省去搅拌但仍能起到厌氧段的作用,为好氧快速摄磷奠定了基础,同时R1缺氧段发生反硝化摄磷,使出水磷降至0.91 mg·L-1.好氧段内R1发生了同步硝化-反硝化(SND),贡献了18.0%的TN去除量,R2也存在SND,但脱氮贡献率较少,仅为9.8%.R1和R2后置缺氧反硝化均以糖原驱动,反硝化速率分别为0.98、0.84 mg·g-1·h-1(以每g VSS产生的N(mg)计),出水TN分别为6.62、9.21 mg·L-1.研究表明,静置段代替传统厌氧段后,可获得更好的脱氮效果,且工艺更为简化.  相似文献   

13.
祖波  马兰  刘波  卢培利  许君 《环境科学》2018,39(8):3937-3945
通过接种厌氧氨氧化污泥到微生物燃料电池阳极,成功启动厌氧氨氧化微生物燃料电池(ANAMMOX-MFC),研究了葡萄糖和苯酚对ANAMMOX-MFC脱氮产电性能的影响.结果表明,当葡萄糖浓度较低时(100~200 mg·L~(-1))时,对ANAMMOX菌有促进作用,ANAMMOX-MFC脱氮产电性能增强,此时反应器进出水COD浓度变化不大;当葡萄糖浓度高于300 mg·L~(-1)时,产电性能逐渐下降,NH+4-N去除率和去除速率逐渐下降,而NO-2-N去除率和去除速率基本保持不变,此时出水COD浓度也出现降低,说明厌氧氨氧化菌活性受到抑制,反硝化菌活性开始增强.极化曲线拟合程度较低,COD浓度变化对电池内阻影响较小.当苯酚浓度较低时(50~100 mg·L~(-1)),对ANAMMOX-MFC脱氮产电性能影响较低;当苯酚浓度超过200 mg·L~(-1)时,ANAMMOX-MFC脱氮产电性能逐渐被抑制.整个过程进出水COD浓度变化不大,极化曲线拟合程度较低,表观内阻有缓慢升高.  相似文献   

14.
好氧颗粒污泥处理制糖工业废水厌氧出水的除磷特性研究   总被引:2,自引:1,他引:1  
制糖工业废水经厌氧生物处理后,COD大幅下降,但是出水中N、P含量仍然较高,严重破坏水体生态平衡.利用好氧颗粒污泥对制糖工业废水的厌氧出水进行脱氮除磷处理,讨论了其除磷过程.经复合底物(乙酸盐、丙酸盐、丁酸盐)培养的好氧颗粒污泥直径1.7 mm,SVI为38.43 mL.g-1,TP去除率达90.9%,出水磷含量仅为1.3 mg.L-1,单位COD释磷率为0.571,厌氧条件下磷的释放速率达到5.73 mg.(g.h)-1,好氧颗粒污泥表现出较好的沉淀性能和较高的除磷活性.由于底物中丙酸盐、丁酸盐含量增加,使得聚磷菌在反硝化过程中NO3--N的利用率增加,即消耗单位质量的NO3--N可以吸收更多的磷.好氧颗粒污泥及其胞外聚合物中P元素的含量与其中Mg、Ca、Fe元素的含量表现出很高的相关性,胞外聚合物对P的吸附使得体系除磷能力进一步增强.通过对污泥反硝化除磷的研究发现,反硝化聚磷菌占总聚磷菌的61.9%,其吸磷量与消耗硝酸盐的比值[m(P)/m(NO3--N)]为1.14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号