首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sulfide-modified nanoscale zero-valent iron (S-nZVI) is a promising material for removal of organic pollutants from water, but S-nZVI nanoparticles (NPs) easily agglomerate and have poor contact with organic contaminants. Herein, we propose a new S-nZVI/graphene aerogel (S-nZVI/GA) composite which exhibits superior removal capability for trichloroethylene (TCE) from water. Three-dimensional porous graphene aerogel (GA) can improve the efficiency of electron transport, enhance the adsorption of organic pollutants and restrain the agglomeration of the core-shell S-nZVI NPs. The TCE removal rates of FeS, nZVI, GA and S-nZVI were 27.8%, 42%, 63% and 75% in 2?hr, respectively. Furthermore, TCE was completely removed within 50?min by S-nZVI/GA. The TCE removal rate increased with increasing pH and temperature, and TCE removal followed the pseudo-first-order kinetic model. The results demonstrate the great potential of S-nZVI/GA composite as a low-cost, easily separated and superior monolithic adsorbent for removal of organic pollutants.  相似文献   

2.
Silicon(111) and Silicon(100) were employed for fabrication of TiO2 films by metal organic chemical vapor deposition( MOCVD).Titanium(Ⅳ) isopropoxide(Ti[O(C3H7)4]) was used as a precursor. The as-deposited TiO2 films were characterized with FE-SEM, XRD and AFM. The photocatalytic properties were investigated by decomposition of aqueous Orange Ⅱ. And UV-VlS photospectrometer was used for checking the absorption characteristics and photocatalytic degradation activity. The crystalline and structural properties of TiO2 film had crucial influences on the photodegradation efficiency. For MOCVD in-situ deposited films on Si substrates, the photoactivities varied following a shape of “M”: at Iower(350℃ ), middle(500℃ ) and higher(800℃ ) temperature of deposition, relative lower photodegradation activities were observed. At 400% and 700% of deposition, relative higher efficiencies of degradation were obtained, because one predominant crystallite orientation could be obtained as deposition at the temperature of two levels, especially a single anatase crystalline TiO2 film could be obtained at 700℃.  相似文献   

3.
A one-step microwave irradiation method was used to deposit carbon and nitrogen co-doped TiO_2((C, N)-TiO_2) on commercial brick((C, N)-TiO_2/brick). The as-prepared samples were characterized by X-ray diffraction, ultraviolet–visible(UV–vis) diffuse reflectance spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy(SEM). A selective technique was also used to investigate the concentration of hydroxyl radicals during UV–vis irradiation of the Methyl Orange solution with the as-prepared samples. The C and N dopants enhanced visible light absorption and provided a longer lifetime for the photo-generated electron–hole pairs. The SEM images showed that the as-prepared sample is porous. The dark adsorption and photodegradation test for(C, N)-TiO_2/brick showed good photodegradation and good recyclability. The best photodegradation rate was 94% after 2 hr. The maximum degradation rate was maintained even after the 6th cycle. The good photocatalytic properties are attributed to the enhanced visible light absorption, enhanced pollutant adsorption arising from the porous structure of the(C, N)-TiO_2 thin film, and longer lifetime of the photo-generated electron–hole pairs.(C, N)-TiO_2/brick should have potential commercial applications in photodegradation processes because of its low cost, good photodegradation, and excellent recyclability.  相似文献   

4.
Performance of a hybrid reactor comprising of trickling filter(TF) and aeration tank(AT) unit was studied for biological treatment of wastewater containing mixture of phenol and m-cresol,using mixed microbial culture.The reactor was operated with hydraulic loading rates(HLR) and phenolics loading rates(PLR) between 0.222-1.078m3/(m2·day) and 0.900-3.456kg/(m3·day),respectively.The efficiency of substrate removal varied between 71%-100% for the range of HLR and PLR studied.The fixed film unit showed better substrate removal efficiency than the aeration tank and was more resistant to substrate inhibition.The kinetic parameters related to both units of the reactor were evaluated and their variation with HLR and PLR were monitored.It revealed the presence of substrate inhibition at high PLR both in TF and AT unit.The biofilm model established the substrate concentration profile within the film by solving differential equation of substrate mass transfer using boundary problem solver tool ’bvp4c’ of MATLAB 7.1 software.Response surface methodology was used to design and optimize the biodegradation process using Design Expert 8 software,where phenol and m-cresol concentrations,residence time were chosen as input variables and percentage of removal was the response.The design of experiment showed that a quadratic model could be fitted best for the present experimental study.Significant interaction of the residence time with the substrate concentrations was observed.The optimized condition for operating the reactor as predicted by the model was 230mg/L of phenol,190mg/L of m-cresol with residence time of 24.82 hr to achieve 99.92% substrate removal.  相似文献   

5.
TiO_2 rutile/anatase heterostructure thin films with varying rutile thickness have been in-situ synthesized via DC magnetron sputtering with Ar gas at room temperature. The crystal texture, surface morphology, energy gap and optical properties of the films have been investigated by X-ray diffraction meter, grazing incidence X-ray diffraction meter, Raman spectroscopy, scanning electron microscopy, and UV–visible spectrophotometer, which indicates that the rutile/anatase heterostructure films are successfully fabricated. The further degradation experiments display that the photocatalytic activity can be dramatically affected by the thickness of the outmost rutile layer and the 100 nm thickness exhibits the best performance in all of the TiO_2 thin films. With the increase of the outmost rutile layer, the optical band gap of TiO_2 film displays a systematic decrease slightly. However,the change in photocatalytic activity does not coincide with that in the band gap. The photoresponse and electrochemical properties of the thin films have been characterized to understand the mechanism of the varied photocatalytic activity.  相似文献   

6.
A novel photocatalyst based on TiO_2–PANI composite supported on small pieces of cork has been reported. It was prepared by simple impregnation method of the polyaniline(PANI)–modified TiO_2 on cork. The TiO_2–PANI/Cork catalyst shows the unique feature of floating on the water surface. The as-synthesized catalyst was characterized by X-ray diffraction(XRD),scanning electron micrograph(SEM), transmission electron microscopy(TEM), thermogravimetric analysis(TGA), Fourier transform infrared spectroscopy(FT-IR), UV–vis diffuse reflectance spectra(UV–vis DRS) and the Brunauer–Emmett–Teller(BET) surface area analysis. Characterization suggested the formation of anatase highly dispersed on the cork surface. The prepared floating photocatalyst showed high efficiency for the degradation of methyl orange dye and other organic pollutants under solar irradiation and constrained conditions, i.e., no-stirring and no-oxygenation. The TiO_2–PANI/Cork floating photocatalyst can be reused for at least four consecutive times without significant decrease of the degradation efficiency.  相似文献   

7.
Birnessite films on fluorine-doped tin oxide(FTO) coated glass were prepared by cathodic reduction of aqueous KMnO_4. The deposited birnessite films were characterized with X-ray diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy.The photoelectrochemical activity of birnessite films was investigated and a remarkable photocurrent in response to visible light was observed in the presence of phenol, resulting from localized manganese d–d transitions. Based on this result, the photoelectrocatalytic oxidation of phenol was investigated. Compared with phenol degradation by the electrochemical oxidation process or photocatalysis separately, a synergetic photoelectrocatalytic degradation effect was observed in the presence of the birnessite film coated FTO electrode.Photoelectrocatalytic degradation ratios were influenced by film thickness and initial phenol concentrations. Phenol degradation with the thinnest birnessite film and initial phenol concentration of 10 mg/L showed the highest efficiency of 91.4% after 8 hr. Meanwhile, the kinetics of phenol removal was fit well by the pseudofirst-order kinetic model.  相似文献   

8.
HW-02 is a new organophosphates herbicide which is discovered and developed in China. The kinetics and mechanism of HW- 02 photodegradation in the organic solvents were studied at 25°C under the irradiation of ultraviolet light. The results showed that photochemical reaction of HW-02 in organic solvents such as n-hexane, methanol, dimethyl benzene and acetone under UV light could be well described by the first kinetic equation, and the photodegradation efficiency decreased with a order of n-hexane methanol xylene acetone. The photodegradation efficiency constant of HW-02 in n-hexane, methanol, xylene and acetone were 4.951 × 10 2 , 3.253 × 10 2 , 2.377 × 10 2 and 1.628 × 10 2 min 1 , and the corresponding half-lives were 13.99, 21.20, 29.15 and 42.56 min, respectively. By separation and identification of photoproducts using GC-MS, it could be concluded that HW-02 was photolyzed through ester cleavage, photo-dechlorination and photoisomerization of the molecule itself.  相似文献   

9.
A coagulation/flocculation process using the composite flocculant polyaluminum chloride-epichlorohydrin dimethylamine (PAC-EPI-DMA) was employed for the treatment of an anionic azo dye (Reactive Brilliant Red K-2BP dye). The effect of viscosity (ηup), basicity (B = [OH]/[Al]) and organic content (WP) on the flocculation performance as well as the mechanism of PAC-EPI-DMA flocculant were investigated. The ηup was the key factor affecting the dye removal efficiency of PAC-EPI-DMA. PAC-EPI-DMA with an intermediate ηup (2400 mPa.sec) gave higher decolorization efficiency by adsorption bridging and charge neutralization due to the co-effect of PAC and EPI-DMA polymers. The WP of the composite flocculant was a minor important factor for the flocculation. The adsorption bridging of PAC-EPI-DMA with ηup of 300 or 4300 mPa.sec played an important role with the increase of WP, whereas the charge neutralization of them was weaker with the increase of WP. There was interaction between WP and B on the removal of reactive dye. The composite flocculant with intermediate viscosity and organic content was effective for the treatment of reactive dyeing wastewater, which could achieve high reactive dye removal efficiency with low organic dosage.  相似文献   

10.
The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.  相似文献   

11.
A series of graphene–TiO2photocatalysts was synthesized by doping TiO2 with graphene oxide via hydrothermal treatment. The photocatalytic capability of the catalysts under ultraviolet irradiation was evaluated in terms of sodium pentachlorophenol(PCP-Na) decomposition and mineralization. The structural and physicochemical properties of these nanocomposites were characterized by X-ray diffraction, N2adsorption–desorption, transmission electron microscopy, scanning electron microscopy, Ultraviolet–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectra, and Fourier-transform infrared spectroscopy. The graphene–TiO2nanocomposites exhibited higher photocatalytic efficiency than commercial P25 for the degradation of PCP-Na, and 63.4% to 82.9% of the total organic carbon was fully mineralized. The improved photocatalytic activity may be attributed to the accelerated interfacial electron-transfer process and the significantly prolonged lifetime of electron-hole pairs imparted by graphene sheets in the nanocomposites. However,excessive graphene and the inhomogeneous aggregation of TiO2 nanoparticles may decrease photodegradation efficiency.  相似文献   

12.
Much attention has been paid to the pollutant dimethylarsenic acid(DMA),because of its high toxicity even at very low doses.Although TiO_2 photocatalytic oxidation(PCO) is one of the few effective methods for treating DMA-containing water,the efficient decomposition of DMA and simultaneous removal of toxic arsenic species remains a significant but challenging task.Here,defective mesoporous TiO_2 with mixed-phase structure was synthesized and used as both photocatalyst and adsorbent for DMA removal.Due to the reduced band-gap and enhanced separation of photogenerated charge carriers, the oxygen-deficient TiO_2 nanostructures exhibited 4.2 times higher PCO efficiency than commercial TiO_2(P25).More importantly,the high surface area of the mesoporous TiO_2 provided sufficient active sites for in-situ adsorption and reaction,resulting in the efficient removal of as-formed As(V).Combining the experimental and characterization results,the different roles of reactive species during PCO reactions were clarified.In the presence of hole(h~+) as the dominant oxidation species,DMA was demethylated and transformed into MMA.Thereafter,MMA was subsequently reduced to As(Ⅲ) by photo-generated electrons.Superoxide radicals(O_2~(·-)) played a significant role in oxidizing As(Ⅲ) into As(Ⅴ),which was finally adsorptively removed by the mesoporous TiO_2.  相似文献   

13.
Coagulation–ultrafiltration(C–UF) is widely used for surface water treatment. With the removal of pollutants, the characteristics of organic matter change and affect the final treatment efficiency and the development of membrane fouling. In this study, we built a dynamic C–UF set-up to carry out the treatment of micro-polluted surface water, to investigate the characteristics of dissolved organic matter from different units. The influences of poly aluminum chloride and poly dimethyldiallylammonium chloride(PDMDAAC) on removal efficiency and membrane fouling were also investigated. Results showed that the dosage of PDMDAAC evidently increased the UV254 and dissolved organic carbon removal efficiencies,and thereby alleviated membrane fouling in the C–UF process. Most hydrophobic bases(HoB)and hydrophobic neutral fractions could be removed by coagulation. Similarly, UF was good at removing HoB compared to hydrophilic substances(HiS) and hydrophobic acid(HoA)fractions. HiS and HoA fractions with low molecule weight accumulated on the surface of the membrane, causing the increase of transmembrane pressure(TMP). Membrane fouling was mainly caused by a removable cake layer, and mechanical cleaning was an efficient way to decrease the TMP.  相似文献   

14.
TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocatalysts were exposed to UV-light irradiation. The results indicated that the photocatalytic activities of the composite photocatalysts varied with the content of TiO2 in the order of 10%〈70%〈50% 〈30%, Moreover, the photocatalytic activity of the composite photocatalysts with TiO2 content 30% was higher than that of the pure P25 with the same mass of TiO2. The strong adsorption capacity of the composite photocatalysts and quantum size effect may contribute to its increased photocatalytic activities. In addition, effect of dosage of composite photocatalysts and soil pH on γ-HCH photodegradation was investigated. Pentachlorocyclohexene, trichlorocyclohexene, and dichlorobenzene were detected as photodegradation intermediates, which were gradually degraded with the photodegradation evolution.  相似文献   

15.
Preparation and application of efficient TiO2/ACFs photocatalyst   总被引:3,自引:0,他引:3  
Activated carbon fibers (ACFs) supported titanium dioxide (TiO2) photocatalyst was developed by sol-gel method. The surface morphology and microstructure of the photocatalyst were characterized with scan electron microscope(SEM), X-ray diffraction patterns and specific surface area analysis. The prepared photocatalyst is specially helpful for the removal of low molecular weight organic pollutants in wastewater. Decomposition efficiency of methylene blue solution by TiO2/ACFs catalyst reached almost 100% under 60 min reaction, while the decomposition efficiency by pure TiO2 was only 25% under 3 h reaction. The mineralization of toluene aqueous solution was measured by total organic carbon instrument, and the evolution of intermediate species was detected by gas chromatograph instrument. The results indicated that the prepared photocatalyst not only enhanced the photoactivity of TiO2, but also suppressed the emergence of intermediate species, which may be more deleterious to human. The enhancement of photocatalysis was due to increased efficiency of adsorption and desorption, which were control steps in heterogeneous photocatalysis.  相似文献   

16.
To elucidate the effect of nitrite ion (NO2^-) on the photodegradation of organic pollutants, a 300 W mercury lamp and Pyrex tubes restricting the transmission of wavelengths below 290nm were used to simulate sunlight, and the photodegradation processes of 2,4-dichlorophenoxyacetic acid (2,4-D) with different concentrations of NO2^- in freshwater and seawater were studied. The effect of reactive oxygen species (ROS) on the photolysis of 2,4-D was also demonstrated using electron paramagnetic resonance (EPR). The results indicated that the 2,4-D photolysis reaction followed the first-order kinetics in freshwater and seawater under different concentrations of NO2^-. Meanwhile, the photochemical reaction rate of 2,4-D increased with increasing concentration of NO2^-. When the concentration of NO2^- was lower than 23 mg/L, the photodegradation rate of 2,4-D in seawater was higher than that in freshwater. However, when the concentration of NO2^- was reached 230 mg/L, 2,4-D degradation slowed down in seawater. It was important to note that EPR spectra showed NO2 radical was generated in the NO5 solution under simulated sunlight irradiation, indicating that 2,4-D photodegradation could be induced by NO2. These results show the key role of NO2^- in photochemistry and are helpful for better understanding of the phototransformation of environmental contaminants in natural aquatic systems.  相似文献   

17.
The heterogeneous photo-Fenton reaction is an effective technique in combating organic contaminants for both soil and water remediation,and extensive studies have focused on enhancing its efficiency and reducing its costs.In this work,we developed novel photoFenton catalysts by simply milling commercially available TiO_2(P25)with Schwertmannite(Sh),a natural iron-oxyhydroxysulfate nanomineral.We expect that the photo-generated electrons from TiO_2could continuously migrate to Sh,which then could enhance the separation of electron-hole pairs on TiO_2and accelerate the reduction of Fe(III)to Fe(II)on Sh,leading to high degradation efficiency of the target organic contaminants.SEM and TEM results showed the distribution of TiO_2on Sh surface for the nanocomposites(TiO_2/Sh).Under simulated sunlight irradiation,the much higher content of Fe(II)was determined on TiO_2/Sh than on Sh via a common method in the iron ore,and the consumption of H_2O_2and the production of·OH were more significant in the TiO_2/Sh system than those in the TiO_2and Sh systems.These results well support our hypothesis that the photo-generated electrons could migrate from TiO_2to Sh on the composites,and can also explain the much higher degradation efficiency of Rhodamine B(RhB)in the TiO_2/Sh system.Besides,TiO_2/Sh had lower Fe dissolution as compared with Sh,and retained high catalytic stability after four repeated cycles.Above merits of the TiO_2/Sh composites,in combining with their simple synthesis method and low-cost property,indicated that they should have promising applications as heterogeneous photo-Fenton catalysts.  相似文献   

18.
A catalyst composed of manganese oxides supported on titania(MnO_x/TiO_2) synthesized by a sol–gel method was selected to remove nitric oxide and mercury jointly at a relatively low temperature in simulated flue gas from coal-fired power plants. The physico-chemical characteristics of catalysts were investigated by X-ray fluorescence(XRF), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS) analyses, etc. The effects of Mn loading,reaction temperature and individual flue gas components on denitration and Hg~0 removal were examined. The results indicated that the optimal Mn/Ti molar ratio was 0.8 and the best working temperature was 240°C for NO conversion. O_2 and a proper ratio of [NH_3]/[NO]are essential for the denitration reaction. Both NO conversion and Hg~0 removal efficiency could reach more than 80% when NO and Hg~0 were removed simultaneously using Mn0.8 Tiat 240°C.Hg~0 removal efficiency slightly declined as the Mn content increased in the catalysts. The reaction temperature had no significant effect on Hg~0 removal efficiency. O_2 and HCl had a promotional effect on Hg~0 removal. SO2 and NH_3were observed to weaken Hg~0 removal because of competitive adsorption. NO first facilitated Hg~0 removal and then had an inhibiting effect as NO concentration increased without O_2, and it exhibited weak inhibition of Hg~0 removal efficiency in the presence of O_2. The oxidation of Hg~0 on Mn O x/TiO_2 follows the Mars–Maessen and Langmuir–Hinshelwood mechanisms.  相似文献   

19.
Manganese and ammonium pollution in surface water sources has become a serious issue.In this study, a pilot-scale filtration system was used to investigate the effect of ammonium on manganese removal during the simultaneous removal of ammonium and manganese from surface water using a manganese co-oxide filter film(MeO_x ). The results showed that the manganese removal efficiency of MeO_x in the absence of ammonium was high and stable, and the removal efficiency could reach 70% even at 5.5 °C. When the influent ammonium concentration was lower than 0.7 mg/L, ammonium and manganese could be removed simultaneously. However, at an ammonium concentration of 1.5 mg/L, the manganese removal efficiency of the filter gradually decreased with time(from 96% to 46.20%). Nevertheless, there was no impact of manganese on ammonium removal. The mechanism by which ammonium negatively affected manganese removal was investigated, demonstrating that ammonium affected manganese removal mainly through two possible mechanisms. On one hand, the decreased p H caused by ammonium oxidation was unfavorable for the oxidation of manganese by MeO_x ; on the other hand, the presence of ammonium slowed the growth of new MeO_x and retarded the increase in the specific surface area of the Me Ox-coated sand, and induced changes in the morphology and crystal structure of Me Ox. Consequently, the manganese removal efficiency of the filter decreased when ammonium was present in the inlet water.  相似文献   

20.
A newly designed aluminum hydroxide gel-coated nanoscale zero-valent iron(AHG@NZVI)with enhanced activity and dispersibility of NZVI was successfully synthesized.The AHG@NZVI composite was synthesized via control of the surface AHG content.AHG@NZVI-1,AHG@NZVI-2 and AHG@NZVI-3 were prepared under centrifugal mixing speeds of 1000,2000 and 4000 r/min,respectively.The activity of AHG@NZVI was evaluated by its tetracycline(TC) removal efficiency.The effects of AHG content,pH value,reaction temperature,and presence of competitive anions on TC removal were investigated.TC could be removed by both adsorption and chemical reduction on AHG@NZVI-2(centrifugal speed 2000 r/min) in a short time with high removal efficiency(≥98.1%) at the optimal conditions.Such excellent performance can be attributed to a synergistic interaction between aluminum hydroxide gel and NZVI:(1) AHG could enhance the stability and dispersity of NZVI;(2) aluminum hydroxide gel could absorb a certain amount of TC and Fe~(2+)/Fe~(3+),which facilitated the mass transfer of TC onto the NZVI surface,resulting in acceleration of the reduction rate of TC by the AHG@NZVI composite;and(3) AHG-Fe~(2+)/Fe~(3+)could absorb a certain amount of TC by flocculation.The kinetics of TC removal by AHG@NZVI composite was found to follow a two-parameter pseudo-first-order model.The presence of competitive anions slightly inhibited the activity of AHG@NZVI systems for TC removal.Overall,this study provides a promising alternative material and environmental pollution management option for antibiotic wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号