首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用β射线法在线监测仪连续监测了贵阳市白云区PM_(10)和PM_(2.5)浓度,分析了2014年6月1日—12月31日7个月内PM_(10)、PM_(2.5)的浓度水平、时变规律和PM_(2.5)/PM_(10)的变化情况。结果表明,监测时段内PM_(10)和PM_(2.5)的日均浓度平均值分别为76.8μg/m~3和40.0μg/m~3,均达到国家二级标准;浓度超标的天数占总观测天数的5.1%和9.3%,属污染轻微的地区。PM_(2.5)/PM_(10)在25.3%~78.8%之间周期性波动,平均值为52.1%。PM_(10)和PM_(2.5)的浓度变化具有很好的正相关性(r=0.919 8,p0.000 1);日均值在7个月中呈现明显的周期性变化,各月相对稳定,12月的PM_(10)和PM_(2.5)浓度最高且变化最为剧烈,6月最为平缓。PM_(10)和PM_(2.5)浓度小时变化总体上呈双峰型分布,最高值出现在出现在09:00—10:00和19:00—21:00前后,最低值出现在14:00—17:00之间。  相似文献   

2.
地铁是人们出行的重要交通方式,车厢内颗粒物污染可影响人体健康。2016年春、秋、冬季对北京地铁1号、2号、4号、10号线进行现场监测,探讨北京地铁车厢内颗粒物污染特征。研究结果表明,北京地铁车厢内PM_(2.5)平均浓度超标率为83.8%~98.7%,地铁1号线PM_(10)平均浓度超标率为59.6%。地铁车厢内PM_(2.5)和PM_(10)浓度存在工作日和周末组间显著性差异,表明客运量对车厢内颗粒物浓度有较大影响。地铁车厢内PM_(2.5)和PM_(10)浓度存在季节性差异,冬季车厢内颗粒物平均浓度最高。不同线路车厢内PM_(2.5)和PM_(10)浓度存在组间差异,地铁通风空调系统、门系统和客运量是造成其差异的主要原因。  相似文献   

3.
为探究人为因素和气象因素对道路区域PM_(2.5)浓度的影响,选择南京仙林大学城某条典型道路开展大气PM_(2.5)监测实验。结果表明,道路清扫抬升PM_(2.5)浓度,白天的抬升作用较傍晚和夜间更加显著。各类交通流对道路区域PM_(2.5)浓度的影响程度排序为:柴油车汽油车燃气车道路行人。PM_(2.5)浓度阴天高于晴天和多云天,霾日(209.3、80.5μg/m~3)高于非霾日(47.0、62.0μg/m~3);在霾日变化特征各异,在非霾日均呈"三峰"分布特征。非霾日,道路区域PM_(2.5)浓度的高值区与相对湿度的高值区,温度、风速的低值区重合;PM_(2.5)浓度的低值区与相对湿度的低值区,温度、风速的高值区重合。温度与PM_(2.5)浓度呈负相关(r=-0.501,P0.05),是影响PM_(2.5)污染程度的关键气象因子。由此可见,道路清扫、交通流和各类气象因素对道路区域PM_(2.5)浓度影响显著。  相似文献   

4.
于2014年春季在长春采集大气PM_(2.5)样品,对PM_(2.5)及其水溶性离子特征进行了分析。结果表明,2014年长春春季PM_(2.5)质量浓度为34.9~237.5μg/m3,平均质量浓度为125.6μg/m3。9种水溶性离子的总质量浓度为24.3~71.2μg/m~3,平均质量浓度为39.8μg/m~3,平均浓度大小表现为SO_4~(2-)Ca~(2+)Cl~-NH_4~+NO_3~-Na~+K~+Mg~(2+)F~-。后向轨迹表明,长春春季PM_(2.5)污染主要来源于内蒙古西北方向和长春东南部渤海、黄海地区。  相似文献   

5.
基于山西省11个地级市2015年7月至2016年5月的PM_(2.5)月均浓度数据,运用地理信息系统(GIS)和分级统计法分析了山西省PM_(2.5)的时空变化特征。结果表明:山西省PM_(2.5)月平均浓度变化具有季节性,2015年8—9月和2016年4—5月污染较轻,2015年12月至2016年1月污染较严重;晋南各城市污染均比较严重,而位于晋北的大同市和晋西的吕梁市PM_(2.5)月均浓度一直处于达标状态。主成分分析发现,除吕梁市外,其他地级市对山西省PM_(2.5)污染的贡献接近,表明不同地级市的PM_(2.5)月均浓度变化主要受大尺度的天气变化影响。研究结果有利于了解山西省PM_(2.5)污染的时空分布格局,进而有助于针对性地开展污染防控工作。  相似文献   

6.
利用2013年邯郸市4个大气环境监测站连续1年的在线监测数据,并结合离线采样成分数据,对比分析了不同季节大气中PM_(2.5)及其主要成分的浓度水平和污染特征。结果表明,PM_(2.5)和PM10四季均存在不同程度的超标现象;污染物在4个站点之间的空间差异不太显著,邯郸市的污染为区域性污染。PM_(2.5)中水溶性无机离子和碳组分的季节变化均较为明显。SO_4~(2-)、NO_3~-和NH_4~+三者浓度之和占PM_(2.5)浓度的39.8%,占PM_(2.5)中总水溶性无机离子浓度的86.2%;四季均存在较强的光化学反应,但硫氧化率(SOR)和氮氧化率(NOR)呈现出不同的季节变化规律,与SO2-4和NO_3~-的来源和去除机制明显不同有关。秋、冬季有机碳(OC)和元素碳(EC)污染较为严重,总碳气溶胶(TCA)浓度分别占PM_(2.5)质量浓度的24.0%和32.9%;研究显示高浓度的OC较多来源于二次有机碳(SOC),高浓度碳易发生二次污染。进一步对PM_(2.5)中各组分进行来源分析得出燃煤、汽油车尾气、生物质燃烧、二次气溶胶和扬尘源对邯郸市PM_(2.5)贡献显著。  相似文献   

7.
以燃烟为室内污染源,对不同污染程度下室内PM_(2.5)浓度进行动态监测,得到PM_(2.5)的沉降规律。研究发现,污染源对室内PM_(2.5)浓度及沉降时间有显著影响,随着燃烟量的增加,室内PM_(2.5)浓度相应升高,恢复到PM_(2.5)初始值所需的沉降时间越长。在质量平衡模型的基础上,建立了封闭条件下室内颗粒物的沉降模型。经验证,PM_(2.5)沉降曲线的变化规律与颗粒物沉降模型一致,说明构建的沉降模型合理可靠。最后,给出了自然通风对控制室内PM_(2.5)污染的效果,为室内PM_(2.5)污染控制提供参考。  相似文献   

8.
为研究杭州市大气PM_(2.5)的污染特征,评估本地污染源和外来污染源对PM_(2.5)的影响,于2013年10月10日至11月2日对杭州市主城区两个不同高度的采样点进行采样,并定量分析大气PM_(2.5)中的化学成分。结果表明,采样期间20、84m高度的大气PM_(2.5)日均质量浓度分别为(80.5±28.9)、(80.3±29.3)μg/m3,不同高度的PM_(2.5)浓度及其化学成分无明显差异;PM_(2.5)主要成分质量分数按如下排序:SO_4~(2-)有机碳(OC)NO_3~-NH_4~+元素碳(EC);大气PM_(2.5)中二次粒子SO_4~(2-)、NO_3~-、NH_4~+平均质量浓度总和约为39.0μg/m3,二次转化是杭州市大气PM_(2.5)的主要来源,SO_4~(2-)、NO_3~-、NH_4~+贡献率为48%左右;20、84 m高度的大气PM_(2.5)中OC分别为(15.6±5.1)、(14.8±4.7)μg/m3,EC分别为(4.6±1.8)、(4.6±1.6)μg/m3,OC/EC(质量比)约为3.3。采样期间,杭州市大气PM_(2.5)在近地面垂直方向上分布较为均匀,表明杭州市大气PM_(2.5)受外来污染源的影响较小。而在本地污染源中,杭州市大气PM_(2.5)主要受到生物质燃烧、机动车尾气、燃煤和餐饮油烟等来源的影响,地面扬尘的作用不明显。  相似文献   

9.
PM_(2.5)是中国空气质量的重要评价指标,影响着环境和人体健康。近年来,遥感反演已逐渐成为监测PM_(2.5)的热点。介绍了大气PM_(2.5)反演常用的遥感数据优缺点及适用范围,对遥感反演方法进行归纳和总结,阐述构建PM_(2.5)与气溶胶光学厚度关系模型、消除气象因素和垂直分布等参数影响的方法,并展望PM_(2.5)遥感反演在高时空分辨率数据和模型耦合等方面的发展趋势。  相似文献   

10.
PM2.5是表征空气质量最为重要的指标之一。近年来随着卫星遥感技术的迅速发展,通过气溶胶光学厚度(AOD)间接反演PM2.5已成为监测PM2.5的重要技术手段。从遥感反演PM2.5基本原理、遥感数据源、PM2.5时空分布计算方法以及发展趋势4个方面对PM2.5遥感反演技术的研究进展进行了综述。  相似文献   

11.
为了解中国北方农村地区冬季室内外PM_(2.5)污染特征,选择河北唐山某农村燃煤与非燃煤室内外PM_(2.5)进行实验研究。结果表明:(1)燃煤采样点室内外PM_(2.5)分别为47.9~370.0、14.8~145.0μg/m~3,非燃煤采样点室内外PM_(2.5)分别为13.6~217.0、10.9~131.0μg/m~3。(2)室内外PM_(2.5)浓度具有一定的相关性。(3)采样期间的20d内,根据《环境空气质量标准》(GB 3095—2012)二级标准(PM_(2.5)24h均值限值为75μg/m~3),燃煤采样点室外PM_(2.5)超标率为10%,而非燃煤采样点为5%;根据GB 3095—2012一级标准(PM_(2.5)24h均值限值为35μg/m~3),燃煤采样点室外PM_(2.5)超标率为35%,而非燃煤采样点为20%;根据《建筑通风效果测试与评价标准》(JGJ/T 309—2013)规定室内PM_(2.5)的日均值应小于75μg/m~3,燃煤采样点室内PM_(2.5)超标率为65%,而非燃煤采样点为35%。  相似文献   

12.
根据水泥工业生产技术、生产过程以及PM_(2.5)排放控制水平,采用排放因子法核算了2013年中国大陆不同省份水泥工业PM_(2.5)排放量。估算结果表明:2013年中国大陆地区水泥工业PM_(2.5)排放总量为476.6万t,其中京津冀及周边7省份(包括北京、天津、河北、山东、山西、内蒙古、河南)的PM_(2.5)排放量合计占排放总量的21.3%;熟料水泥生产企业PM_(2.5)排放量占排放总量的73.1%,水泥磨站的PM_(2.5)排放量占26.9%;有组织PM_(2.5)排放量为307.8万t,占排放总量的64.6%,无组织PM_(2.5)排放量为168.8万t,占排放总量的35.4%。  相似文献   

13.
采用ICS-1100型离子色谱仪在2014年6月到2015年6月期间对西安市大气中PM_(2.5)水溶性离子(NO_3~-、NH_4~+、SO_4~(2-)、NO_2~-、Cl~-、Na~+、Ca~(2+)、Mg~(2+)、K+)进行的实时监测,分析了全年PM_(2.5)中水溶性无机离子变化特征。结果显示:采样期间,西安市PM_(2.5)中NO_3~-、NH_4~+、SO_4~(2-)和Cl~-年均值占总离子的89.49%,且有明显月变化趋势,峰值出现在11和12月份,月浓度均值较往年同期降低,最高达到30.26、15.19、11.43和16.60μg·m~(-3)。Na~+、Ca~(2+)、Mg~(2+)和K~+浓度变化趋势与主离子不完全一致。NO_3~-均值大于SO_4~(2-)均值,表明PM_(2.5)中水溶性离子的主要贡献者为移动源。NO_3~-小时均值高于SO_4~(2-)小时均值,且在10:00和20:00处形成2个峰值。PM_(2.5)中NO_3~-与NO_2~-在0.05水平上显著相关,SO_4~(2-)与Cl~-的在0.01水平上极显著相关。  相似文献   

14.
为探究气象条件对污染物浓度的影响,于2013年10月至2014年10月在乌鲁木齐市主城区采集PM_(2.5)样品,并选取同期气象站监测的气象数据进行分析。结果表明:(1)乌鲁木齐市采暖期PM_(2.5)日均值平均达到84.70μg/m~3,超出了《环境空气质量标准》(GB 3095—2012)中24h平均二级限值(75μg/m~3),是非采暖期(20.66μg/m~3)的4倍多。(2)采暖期风速、相对湿度、气温、水汽压与PM_(2.5)日均值极显著相关,非采暖期相对湿度与PM_(2.5)日均值极显著相关。  相似文献   

15.
为了解无风天情况下PM_(2.5)、PM_(10)的人体暴露水平及扩散机制,对人体呼吸高度的PM_(2.5)、PM_(10)浓度及近地面不同高度处的温度、相对湿度进行连续监测,分析了垂直温度梯度、相对湿度的相对变化速率对PM_(2.5)、PM_(10)浓度的影响,并利用回归分析法建立PM_(2.5)、PM_(10)浓度与不同高度处温度、相对湿度的单、多变量回归模型,从中选取最优回归模型。结果表明:(1)晴天的PM_(2.5)、PM_(10)浓度在研究时段(9:00—21:00)内总体呈先降低再升高的趋势,而阴天、小雨天PM_(2.5)、PM_(10)浓度呈多峰变化,起伏较大;晴天不同高度的温度差异大,阴天、小雨天温度差异相对较小;晴天不同高度的相对湿度曲线总体均呈U型分布,相较而言,阴天及小雨天各层的相对湿度曲线波动较大;(2)垂直温度梯度是影响晴天PM_(2.5)、PM_(10)扩散的主要原因,相对湿度变化是影响颗粒物扩散的另一重要因素。(3)PM_(2.5)、PM_(10)浓度的单、多变量最优回归模型表明,低污染晴天,温度是影响颗粒物扩散的主要因素,高污染晴天则主要受相对湿度的影响,介于上述两种污染状况之间时,PM_(2.5)、PM_(10)浓度不仅受各层相对湿度的控制,还受到温度的影响。阴天PM_(2.5)、PM_(10)浓度的最优回归模型相对复杂,模型精度不及晴天。  相似文献   

16.
区域大气环境中PM_(2.5)/PM_(10)空间分布研究   总被引:3,自引:2,他引:3  
提出了一种利用移动监测技术研究区域大气环境中PM2.5/PM10空间分布的方法,并在2004年12月进行了宁波市全市域PM2.5/PM10空间分布的研究.数据显示:相同路径所代表的地区PM2.5和PM10具有很好的相关性,多数路径上PM2.5与PM10数据的相关系数平方在0.95以上,而不同路径上PM2.5与PM10的比值不同.文中给出了宁波市PM2.5/PM10污染的空间分布图,直观地显示出PM2.5/PM10污染的空间分布情况,突出了污染的重点点位和地区.  相似文献   

17.
正联想集团与云创科技近日达成了战略合作,联手推出了"环保云——PM2.5云检测平台"解决方案,这一方案通过依托前沿的物联网、云计算技术,实现了对包括PM2.5在内的海量城市空气质量数据的多维度监测,为相关政府部门进行环境监测和污染防治提供了更加全面、实时、准确的参考数据和执法依据。  相似文献   

18.
于2014年1—4月在天津城区采集PM2.5样品,采用热光反射法测定样品中有机碳(OC)、元素碳(EC)及8个碳组分(OC1、OC2、OC3、OC4、EC1、EC2、EC3、裂解碳(OP))的含量。结果表明,天津城区空气PM2.5中OC、EC质量浓度分别为(18.7±9.9)、(3.9±2.6)μg/m3,两者之和占PM2.5质量浓度的18.0%。采样期间OC与EC变化趋势一致,均呈现春节期间、普通采暖季浓度较高,非采暖季浓度较低的特点。对8个碳组分进行相关性分析,发现OC1~OC4及EC1~EC3分别来自相似的来源或受大气中类似的二次过程影响,主成分分析结果表明,燃煤、生物质燃烧和机动车排放对天津城区PM2.5中碳组分贡献显著。  相似文献   

19.
介绍了室内外空气颗粒物吸入暴露的评价方法,选择PM2.5作为检测评价的对象,初步评价了上海市某区不同年龄段人员的PM2.5暴露水平。结果表明:(1)成人和老人的全年日平均PM2.5吸入暴露量均较高,并且成人的全年日平均PM2.5吸入暴露量变化曲线和儿童相似。(2)老人室内PM2.5吸入暴露量要明显高于室外,其主要原因是老人在室内时间较长。儿童和成人的室外PM2.5吸入暴露量高于室内。(3)不同人员的年平均PM2.5吸入暴露量的排序为成人老人儿童,其年平均PM2.5吸入暴露量分别为1.141、1.046、0.935mg。  相似文献   

20.
为探究杭州市能见度下降的原因,2013年10月10日至11月2日,在杭州市进行了大气PM_(2.5)采样,并定量分析了其化学成分,通过消光系数和能见度的计算,确定了杭州市能见度与消光系数的关系。结果表明,杭州市PM_(2.5)日平均质量浓度为26.0~133.1μg/m~3,平均值为80.5μg/m~3,大气消光系数为145.9~657.7Mm~(-1),平均值为372.2Mm~(-1),消光系数的主要贡献因子为(NH_4)_2SO_4、NH_4NO_3、颗粒有机物(POM)和元素碳(EC)。二次粒子是影响杭州市大气能见度的最主要因素。Koschmieder公式能较好地描述能见度与消光系数的关系,得到杭州市的Koschmieder系数为1.81,可以用来预测杭州市的能见度水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号