首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2015年7月~2016年3月期间在广西玉林市3个空气监测点位共采集环境大气颗粒物PM_(10)样品218份,PM_(2.5)样品202份,利用多波段热/光碳分析仪分析其颗粒物中有机碳和(OC)和元素碳(EC)浓度水平、时空变化、污染特征及可能来源.结果表明,玉林市PM_(10)中OC和EC质量浓度分别为10.99μg·m~(-3)和5.11μg·m~(-3);PM_(2.5)中OC和EC质量浓度分别为7.51μg·m~(-3)和4.70μg·m~(-3).3个监测点位大气中PM_(10)和PM_(2.5)冬季的OC和EC浓度水平均高于其他季节,PM_(10)、PM_(2.5)中OC和EC的相关性较好,R2分别为0.58和0.60(P均小于0.01).应用最小OC/EC比值法对二次有机碳(SOC)含量进行了估算,冬季大气PM_(10)和PM_(2.5)中SOC平均质量浓度分别为14.50μg·m~(-3)和6.74μg·m~(-3),高于其他季节.PM_(10)和PM_(2.5)中SOC/OC比值均0.5,玉林市大气中粗细颗粒物均以SOC为主.夏季PM_(10)和PM_(2.5)中SOC/OC分别为80.6%和77.7%,为四季最高值,与夏季温度较高、光照强烈、有利于光化学反应将OC转化为SOC有关.  相似文献   

2.
王成辉  闫琨  韩新宇  施择  毕丽玫  向峰  宁平  史建武 《环境科学》2017,38(12):4968-4975
为研究高原地区机动车尾气排放特征,选取昆明市草海隧道内大气PM_(2.5)为研究对象,并对样品中的水溶性离子、碳组分、多环芳烃、无机元素进行分析.结果表明,隧道内PM_(2.5)质量浓度为225.65~312.84μg·m~(-3),是同期环境大气中PM_(2.5)浓度的11~14倍,PM_(2.5)中碳组分所占比重最高,约占总质量浓度的35.73%,其次无机元素占21.78%,离子组分在4.79%~5.52%之间,含量最低的是多环芳烃,占0.25%~0.32%;离子组分中Ca~(2+)和SO_4~(2-)含量较高,占总离子浓度的77.78%~80.17%,显示为地壳来源,其次是NH_4~+、NO_3~-的浓度也相对较高,主要来自机动车尾气源;草海隧道PM_(2.5)中以分子量相对较大、不易挥发的4、6环PAHs为主,机动车尾气对PM_(2.5)中多环芳烃的贡献十分显著,毒性最强的Ba P浓度是国家规定浓度限值的23~29倍,高原草海隧道大气中存在PM_(2.5)暴露健康风险;隧道大气PM_(2.5)中元素由PCA分析显示机动车尾气和道路扬尘来源占比约61.64%,其次机械磨损排放源占比约为17.49%,最后为轮胎磨损排放源,占比为9.11%;云贵高原大气低压低氧条件下,机动车发动机燃料不完全燃烧几率较高,导致机动车尾气PM_(2.5)中的OC以及PAHs排放量增加.  相似文献   

3.
兰溪市PM2.5中有机物的组成特征、季节变化及来源研究   总被引:1,自引:0,他引:1  
为更好地理解我国中小城市地区大气细颗粒物的污染特征,利用大流量采样器采集了浙江中部典型内陆城市-兰溪市近郊和市区两个站点2016年四个季节的PM_(2.5)样品,测定了碳质气溶胶的含量,利用气相色谱/质谱联用仪(GC/MS)分析了正构烷烃、藿烷、多环芳烃和长链脂肪酸等弱极性有机物的组成.结果表明,兰溪PM_(2.5)中有机碳的年均浓度为9.7μg·m~(-3),有机物中正构烷烃、藿烷、多环芳烃和脂肪酸的年均浓度分别为40.8、2.0、21.0和168 ng·m~(-3).同系物分布特征表明,化石燃料燃烧是兰溪PM_(2.5)中正构烷烃的主要来源,但植物蜡也有重要贡献;藿烷的组成及其季节变化显示兰溪PM_(2.5)中的藿烷主要来源于机动车排放,但冬季存在明显的燃煤贡献;基于BeP/(BeP+BaP)、IcdP/(IcdP+Bg P)等特征比值分析,兰溪PM_(2.5)中的多环芳烃主要来源于机动车尾气和煤炭/生物质燃烧的混合贡献,冬季燃煤贡献较高;兰溪夏季多环芳烃的老化程度较低,表明兰溪夏季PM_(2.5)以本地排放新鲜颗粒为主,外来输送的影响较小;脂肪酸的浓度和组成说明餐饮排放对市区PM_(2.5)的影响较大.研究结果为大气PM_(2.5)的来源解析提供了重要的基础信息.  相似文献   

4.
于2015年8月到2016年4月在菏泽市城区采集PM_(2.5)颗粒,利用热/光碳分析仪测定了颗粒物中8种碳组分,获得了有机碳(OC)和元素碳(EC)的质量浓度,分析了OC与EC的比值、相关性,使用OC/EC比值法估算了二次有机碳(SOC)的浓度,并使用主成分分析法研究8种碳组分含量.结果表明,(1)PM_(2.5)中OC、EC的年质量浓度变化范围分别为1.2~60.6μg·m~(-3)、0.6~24.8μg·m~(-3),OC/PM_(2.5)、EC/PM_(2.5)的季节分布特征相似:冬季春季秋季夏季;(2)OC/EC的年平均值为2.6±1.0,春夏秋冬OC、EC的相关系数分别为0.91、0.56、0.86、0.75,估算的SOC年平均浓度为(4.7±5.0)μg·m~(-3);(3)不同季节8种碳组分质量分数均为EC1最高,EC3最低.主成分分析结果显示,春秋冬这3个季节碳组分的主要来源为燃煤、机动车和生物质燃烧.  相似文献   

5.
为研究南京北郊不同季节PM_(2.5)中碳质组分的主要来源,分别在2014年1月1—23日和2014年7月3—22日进行PM_(2.5)样品采集,并分析其中有机碳(OC)、元素碳(EC)浓度及总碳同位素组成.结果表明,冬季PM_(2.5)浓度高于夏季,平均值为(146.69±64.67)μg·m-3,OC、EC浓度较高,分别为(14.77±5.58)μg·m-3与(9.01±4.74)μg·m-3;而夏季PM_(2.5)浓度为(57.69±23.80)μg·m-3,OC、EC浓度分别为(5.94±2.20)μg·m-3和(2.78±1.25)μg·m-3.二次有机碳(SOC)占OC比重较小,冬、夏两季分别为36.99%与27.37%,这与采样点紧邻公路主干道使颗粒物未得到充分的二次反应有关.南京北郊冬季δ13C平均值为-25.38‰±0.36‰,夏季为-26.50‰±0.58‰,通过与潜在污染源的δ13C值对比,推断出采样期间冬季主要的潜在碳质污染源为煤炭燃烧及机动车尾气,夏季主要的潜在碳质污染源为生物质燃烧及汽车尾气.  相似文献   

6.
为探讨生物质在明火和阴燃两种不同条件下PM_(2.5)及主要成分的排放差异,选取了7种具有代表性的生物质样品(小麦、水稻、马尾松叶、马尾松枝、杂草、玉米、棉花)进行了燃烧实验,并对PM_(2.5)样品中的7种主要水溶性离子(Na~+、NH_4~+、K~+、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-))及有机碳(OC)、元素碳(EC)、水溶性有机碳(WSOC)、有机酸和左旋葡聚糖(LG)等有机成分进行了分析.结果表明,明火和阴燃条件下PM_(2.5)的排放因子分别为2.82~7.74 mg·g~(-1)和3.24~22.56 mg·g~(-1),阴燃时的排放因子偏高,不同燃料类型也存在一定差异.燃烧排放PM_(2.5)中水溶性离子以Cl~-为最高,占总离子的比例为72%~94%,且与NH_4~+存在显著正相关关系,水溶性离子整体表现为明火条件下的浓度显著高于阴燃条件下的浓度.受阴燃条件下氧气不足的影响,PM_(2.5)中有机组分的浓度表现为阴燃高于明火,进而导致阴燃时PM_(2.5)的排放因子增加.水稻秸秆燃烧烟尘中3种来源特征比值(LG/PM_(2.5)、LG/OC和LG/WSOC)仅为小麦和玉米秸秆燃烧排放相应比值均值的0.34、0.24和0.27倍,表明在不同农作物的收获季节采用上述特征比值进行生物质燃烧来源估算时,应区别对待.  相似文献   

7.
叶招莲  刘佳澍  李清  马帅帅  许澎 《环境科学》2017,38(11):4469-4477
为更好地了解碳质组分的特点和来源,在常州市采集了夏季(7~8月)和秋季(10~11月)60个细颗粒物(PM_(2.5))样品.采样期间,夏季PM_(2.5)、OC、EC平均浓度分别为73.0、14.3和3.3μg·m~(-3),秋季为84.2、13.2和3.5μg·m~(-3).总碳质组分(OC+EC)占PM_(2.5)总质量的24.3%(夏季)和20.7%(秋季).采用IMPROVE-A热/光反射法测定的碳质8组分结果表明,OC2、OC3、OC4和EC1相关性好(r0.92),EC2和EC3相关性较好(r0.65),说明可能的相似来源.OC与EC相关性中等,表明碳质组分来源复杂.秋季WSOC/OC(60.9%)略高于夏季(57.4%),而夏季SOC/OC(52.5%)略高于秋季(49.0%).夏季和秋季SOC/OC都低于WSOC/OC,说明部分水溶性有机碳是一次源.WSOC和SOC相关性强,进一步验证了大部分SOC具有水溶性.碳质组分之间的关系及主成分分析表明,采样期间燃煤和机动车尾气排放是碳质组分的两个主要来源.后向轨迹分析表明,采样点PM_(2.5)和碳质组分主要受当地排放源和短距离传输的影响,长距离传输贡献较小.  相似文献   

8.
上海地区降雨清除PM2.5的观测研究   总被引:1,自引:0,他引:1  
分析2012—2016年上海徐家汇站的雨量和颗粒物(PM_1、PM_(2.5)、PM_(10))观测数据发现,降雨对PM_(2.5)的湿清除作用明显,降雨日的PM_(2.5)质量浓度较非降雨日平均降低约30%,在污染季节降低更加显著约50%.降雨时PM_1在PM_(2.5)中的占比明显下降,PM_1质量浓度下降幅度占PM_(2.5)下降幅度的84%,表明降雨对PM_1的有效清除是PM_(2.5)质量浓度下降的主要原因.降雨过程结束后PM_(2.5)质量浓度是否下降和降雨前PM_(2.5)的初始质量浓度关系密切,当初始浓度在冬季大于70μg·m~(-3)、在其他季节大于45μg·m~(-3)时,80%以上的降雨过程结束后PM_(2.5)质量浓度较降雨前下降,因此可作为研判降雨过程对PM_(2.5)湿清除影响的预报因子.  相似文献   

9.
PM_(2.5)是大气的重要污染物之一,其成分复杂,为研究PM_(2.5)的污染特征及来源,于2016年3月采集南京北郊地区大气中的PM_(2.5),利用Dinoex ICS-3000和ICS-2000型离子色谱和DRI Model 2001A热/光碳分析仪分别测定了PM_(2.5)中的阴阳离子和碳质组分,利用元素分析仪-同位素质谱仪测定大气PM_(2.5)中的总碳同位素(δ~(13)CTC)组成特征.结果表明,2016年3月期间南京北郊地区PM_(2.5)污染严重,平均浓度达(106.16±48.70)μg·m~(-3),且88%观测天中存在明显的二次有机污染,SOC平均浓度为(3.58±2.78)μg·m~(-3),且在晴天条件下高浓度的二次有机碳(SOC)与紫外线作用下的O_3具有较强的相关性.大气PM_(2.5)中δ~(13)CTC值范围是-26.56‰~-23.75‰,平均值为(-25.47‰±0.63‰),结合化学组分的三相聚类分析结果可知,大气PM_(2.5)主要来源于燃煤过程、机动车排放,此外还受地质源和生物质燃烧源的影响.  相似文献   

10.
嵊泗地区大气PM2.5中汞形态污染及其与碳组分的关系   总被引:1,自引:1,他引:0  
2014年11月~2015年8月在舟山群岛嵊泗岛上设定采样点采集了4个不同季节的大气PM_(2.5)样品.采用微波消解-原子荧光光度法测定了颗粒物中汞及其不同形态,采用热/光碳分析仪分析样品中有机碳(OC)和元素碳(EC).结果表明,嵊泗岛上大气PM_(2.5)中总汞(PBM)的质量浓度范围为0.02~1.25 ng·m-3,而单位质量颗粒物中汞的含量为(12.46±18.79)μg·g-1,比陆地城市PM_(2.5)的汞含量偏高.ANOVA分析结果表明,PBM的季节变化规律为:秋季春季冬季夏季.春秋季节汞的质量浓度较高,这表明春秋季节嵊泗地区的汞可能受到外来输送的影响.此外,大气PM_(2.5)中不同形态汞的分析结果表明,惰性汞(RPM)的比例最高,占53.1%.OC、EC均与PBM显示出明显的正相关性,表明碳组分有利于汞的气-粒转化.由于OC/EC比值间接反映了大气光氧化能力的高低,而OC/EC与可溶盐酸汞(HPM)呈显著正相关,这说明高浓度HPM主要来自于大气中的气-粒转化.char-EC/soot-EC与形态汞呈现显著负相关,表明嵊泗地区的大气颗粒汞主要受外界源输入的影响.  相似文献   

11.
海口市PM_(2.5)和PM_(10)来源解析   总被引:2,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   

12.
Trajectory clustering, potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) methods were applied to investigate the transport pathways and identify potential sources of PM2.5 and PM10 in different seasons from June 2014 to May 2015 in Beijing. The cluster analyses showed that Beijing was affected by trajectories from the south and southeast in summer and autumn. In winter and spring, Beijing was not only affected by the trajectories from the south and southeast, but was also affected by trajectories from the north and northwest. In addition, the analyses of the pressure profile of backward trajectories showed that backward trajectories, which have important influence on Beijing, were mainly distributed above 970 hPa in summer and autumn and below 950 hPa in spring and winter. This indicates that PM2.5 and PM10 were strongly affected by the near surface air masses in summer and autumn and by high altitude air masses in winter and spring. Results of PSCF and CWT analyses showed that the largest potential source areas were identified in spring, followed by winter and autumn, then summer. In addition, potential source regions of PM10 were similar to those of PM2.5. There were a clear seasonal and spatial variation of the potential source areas of Beijing and the airflow in the horizontal and vertical directions. Therefore, more effective regional emission reduction measures in Beijing''s surrounding provinces should be implemented to reduce emissions of regional sources in different seasons.  相似文献   

13.
为探究临沂市PM_(2.5)和PM_(10)中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM_(2.5)和PM_(10)进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM_(2.5)和PM_(10)中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM_(2.5)中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧源、扬尘源、机动车排放和工业源,贡献率分别为22.64%、 7.49%、 41.22%、 14.71%和13.94%.PM_(10)中元素来源主要有扬尘源、燃煤和铜冶炼的混合源、机动车排放和工业源,贡献率分别为55.47%、 19.80%、 7.48%和12.83%.由此可见,扬尘源和燃煤与铜冶炼的混合源是临沂市颗粒物污染形成过程中的重要源类.  相似文献   

14.
Haze phenomena were found to have an increasing tendency in recent years in Yong'an, a mountainous industrial city located in the center part of Fujian Province, China. Atmospheric fine particles (PM2.5) in the urban area during haze periods in three seasons (spring, autumn and winter) from 2007 to 2008 were collected, and the mass concentrations and chemical compositions (seventeen elements, water soluble inorganic ions (WSIIs) and carbonaceous species) of PM2.5 were determined. PM2.5 mass concentrations did not show a distinct difference among the three seasons. The carbonaceous species organic carbon (OC) and elemental carbon (EC) constituted up to 19.2%-30.4% of the PM2.5 mass during sampling periods, while WSIIs made up 25.3%-52.5% of the PM2.5 mass. The major ions in PM2.5 were SO42-, NO3- and NH4+, while the major elements were Si, K, Pb, Zn, Ca and Al. The experimental results (from data based on three haze periods with a 10-day sampling length for each period) showed that the crustal element species was the most abundant component of PM2.5 in spring, and the secondary ions species (SO42-, NO3-, NH4+, etc.) was the most abundant component in PM2.5 in autumn and winter. This indicated that dust was the primary pollution source for PM2.5 in spring and combustion and traffic emissions could be the main pollution sources for PM2.5 in autumn and winter. Generally, coal combustion and traffic emissions were considered to be the most prominent pollution sources for this city on haze days.  相似文献   

15.
为研究天津市春季道路降尘PM2.5和PM10中碳组分特征,丰富道路降尘的成分谱库,于2015年3月22日-5月23日在天津市主干道、次干道、支路、快速路和环线5种道路类型道路两侧采集道路降尘样品,通过再悬浮装置得到PM2.5和PM10的滤膜样品,并用热光碳分析仪测定PM2.5和PM10中OC(有机碳)和EC(元素碳)的百分含量,利用两相关样本非参数检验、OC/EC比值法以及相关分析法,定性分析天津市春季道路降尘PM2.5和PM10的碳组分的特征及其主要来源;利用因子分析法,进一步分析道路降尘PM2.5和PM10的主要来源.结果表明:道路降尘PM2.5中w(OC)为10.27%(主干道)~13.94%(快速路)、w(EC)为1.24%(支路)~1.77%(环线),PM10中w(OC)为8.48%(主干道)~12.56%(快速路)、w(EC)为1.01%(次干道)~1.59%(快速路),可见快速路中碳组分含量相对较高,这可能与其车流量较大,导致道路扬尘和机动车尾气排放量较大有关,也可能与其路面保养及保洁状况有关.对于大部分碳组分而言,其在PM2.5中的百分含量均高于PM10;除EC2,其他碳组分在PM2.5和PM10间均无显著性差异.不同道路类型PM2.5和PM10中OC/EC的大小顺序基本相同,与其车质量变化趋势相反.道路降尘中PM2.5中碳组分主要来源于道路扬尘、机动车尾气、生物质燃烧以及燃煤源的混合源,PM10主要受道路扬尘、燃煤和柴油车尾气等污染源的影响.   相似文献   

16.
为明确邯郸市PM_(2.5)中碳组分污染浓度、来源和近年来的变化,分别于2015和2017年1、4、7、10月在河北工程大学能环实验楼4层采集PM_(2.5)样品,采用热/光碳分析仪测定了样品中8种碳组分含量,并计算得到有机碳(OC)、元素碳(EC)、Char-EC和Soot-EC含量.结果表明,2017年PM_(2.5)中碳组分浓度较2015年下降约15%,质量分数下降约17%,季节变化均表现为冬高夏低的特点;2017年SOC浓度和SOC/PM_(2.5)、SOC/OC比值均低于2015年,SOC浓度和SOC/PM_(2.5)比值下降约36%,季节分布特征相似(秋冬高、春夏低).两年除夏季外,其余季节OC、EC相关系数均高于0.7,表明存在共同来源;2017年OC、OC1与EC相关性高于2015年,此外,两年中EC1~EC3、Char-EC和Soot-EC与各组分相关系数差异较大;两年中Char-EC与OC、EC的相关性(r=0.5~1.0)明显高于Soot-EC与OC、EC的相关性(r=0.1~0.6),这主要与二者形成机理有关.碳组分之间的关系和主成分分析结果表明,燃煤、生物质燃烧和柴油车尾气的混合源是2015年碳质组分的主要来源,而2017年则来源于燃煤和机动车尾气排放.  相似文献   

17.
在哈尔滨市2014年1—3月的供暖期间对城区、郊区及周边农村地区的室内外PM2.5样品进行了同时采集,分析了样品中碳质组分、水溶性离子及无机元素后,通过颗粒物热力学模型计算了颗粒物原位酸度,并通过基于标记的正矩阵分解(PMF)模型对室内外颗粒物的来源进行了表征.计算结果表明,3个地点室外PM2.5原位酸度均低于室内,且室内外颗粒物原位酸度均为市区最高.PMF结果表明,哈尔滨市区、郊区及农村地区二次源对室外PM2.5的贡献均排第3位.交通源对市区及郊区的贡献在16%~20%,对于农村地区则是最弱的影响因素.生物质燃烧是农村地区室内外PM2.5的首要来源;燃煤和工业排放则是市区室内外PM2.5的主要来源;工业排放是郊区室外PM2.5的首要来源,与郊区的石化及金属工业有密切联系.因此,为提升哈尔滨市供暖期的空气质量,在进行农村散煤与生物质燃烧治理,推进农村地区清洁能源利用的同时,应多措并举注重城市交通状况改善和促进燃煤锅炉与工业超低排放技术的升级改造,促进区域协同治理.  相似文献   

18.
为了解山西省武乡县城大气PM_(2.5)污染特征及PM_(2.5)中痕量重金属的生态和健康风险,在分析县城环境空气质量状况的基础上,分别于秋季(2014-10-22~2014-11-19)和冬季(2015-01-12~2015-02-13)在武乡县环境保护局楼顶用中流量采样器采集大气PM_(2.5)样品,每天换膜一次,利用称重法计算PM_(2.5)浓度,运用电感耦合等离子体原子发射光谱仪(ICP-AES)测定样品中As、Cd、Cr、Cu、Ni、Pb、Zn 7种元素含量,运用地累积指数法、生态风险指数法、相关性分析和主成分分析、美国环保署暴露模型等表征痕量重金属的污染程度、来源、潜在的生态和健康风险等.结果表明,冬季大气PM_(2.5)浓度是秋季的3倍左右,有65%的天数超过国家环境空气质量二级标准(GB 3095-2012);PM_(2.5)中痕量重金属来源主要包括燃煤和交通等人为源,贡献率分别为58.38%和18.73%,所测重金属浓度顺序为CuZnPbCrAsNiCd,其中Cd、Cu的生态风险指数、Cr的非致癌和致癌暴露风险大于其它金属.冬季燃煤增加和大气扩散条件差是武乡县城大气PM_(2.5)浓度超标以及造成痕量重金属生态和健康风险增大的主要原因.  相似文献   

19.
苏锡常地区PM2.5污染特征及其潜在源区分析   总被引:3,自引:1,他引:2  
利用2014年12月—2015年11月苏锡常地区国控大气环境质量监测站发布的逐时数据,分析了研究区PM_(2.5)浓度的季节变化和空间分布特征,并利用HYSPLIT模型分析了大气污染物的输送路径及苏锡常地区PM_(2.5)的潜在源区.结果表明,苏锡常地区PM_(2.5)浓度日均值变化趋势基本一致,均呈现冬季高、夏季低的规律.PM_(2.5)浓度四季空间差异显著,不同监测站之间的差异较小.四季PM_(2.5)浓度与其它污染物之间相关性显著.单位面积污染物排放量与空气质量分布的空间错位,表明该地区PM_(2.5)污染与区域性污染物迁移有较大关系.苏锡常地区气流后向轨迹季节变化特征明显,冬、春、秋季的气流主要来自西北内陆地区,夏季气流以东南和西南方向输入居多.聚类分析表明,来自内陆的污染气流和来自海洋的清洁气流是苏锡常地区两种主要输送类型,外源污染气流不仅直接输送颗粒物,还贡献了大量的气态污染物.山东南部、江苏西部、安徽东部、浙江北部及江西西北地区对苏锡常冬季PM_(2.5)浓度贡献较大,春、夏、秋季的潜在源区主要分布在苏锡常本地和周边城市.  相似文献   

20.
我国工程机械排放控制起步较晚.为研究实际工况下工程机械的PM2.5排放特性及其碳质组分构成,采用便携式颗粒物稀释采样系统,对3台工程机械(2台挖掘机和1台装载机)在不同典型工况(行驶、作业和怠速)下的PM2.5及其碳质组分〔OC(有机碳)和EC(元素碳)〕的现场排放特征进行了测试.结果表明:沃尔沃挖掘机、山河智能挖掘机的PM2.5排放因子(基于燃油)分别为1.85~3.26和1.56~2.62 g/kg,厦工装载机的PM2.5排放因子为0.98~1.48 g/kg.不同工况对PM2.5排放因子影响较大,怠速工况下PM2.5排放因子是行驶工况下的1.49~1.76倍.工程机械排放的PM2.5中,碳质组分是最主要的成分,其质量分数高达71.0%~84.5%.其中,w(OC)为44.6%~72.0%,在怠速工况下最高;w(EC)则为8.6%~30.9%,在行驶工况下较高.测试工程机械的PM2.5排放水平较高,因此应尽快加强工程机械排放的污染防治.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号