首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用固相萃取(SPE)-超高效液相色谱-串联质谱法(UPLC-MS/MS)建立了水中27种三嗪类除草剂的分析方法.通过对固相萃取柱、淋洗液和色谱柱流动相等的优化,确定以Oasis HLB固相萃取柱、0.1%甲酸-乙腈(2∶8,V/V)为淋洗液、0.1%甲酸-乙腈(6∶4,V/V)为流动相做水样预处理.在最优条件下,目标物在水中回收率为79.1%—129.2%,相对标准偏差(RSDs)在8.8%—14.3%,线性范围均在1—2000μg·L-1,各目标物标准品在UPLC-MS/MS系统中有效的线性相关系数(R2)为0.999以上.该方法具有检测限低、回收率高等优点,经实际样品测试,可适用于水中27种三嗪类除草剂残留的同时检测.  相似文献   

2.
固相萃取-高效液相色谱法分析蔬菜中四环素类抗生素   总被引:8,自引:0,他引:8  
建立了蔬菜中四环素类抗生素(TCs)的固相萃取-高效液相色谱-荧光检测(HPLC-FLD)分析方法.蔬菜样品以(乙腈+ Na_2SO_4+CH_3COONa=Na_2EDTA+CaCl_2)溶液超声提取,提取液再用正己烷进行液-液萃取去脂,以HLB柱净化富集.利用HPLC-FLD,以缓冲液[0.35mol·l-1CaCl_2+0.025mol·l-1Na_2EDTA+0.075mol·l-1CH_3COONa(Ph=7.3)]-乙腈(82.5:17.5,V/V)为流动相,于激发波长390nm、发射波长512nm处进行检测.蔬菜样品中土霉素(OTC)和四环素(TC)的定量限分别为0.471μg·kg-1和0.532μg ·kg-1,加标回收率为68.61%-114.12%.利用该方法对不同蔬菜样品的分析结果表明,OTC和TC的含量分别在0.041--0.174mg·kg-1(鲜重)和0-0.048mg·kg-1(鲜重)之间,部分蔬菜中 OTC的含量高于我国农业部动物性食品中控制标准.  相似文献   

3.
本研究建立了检测污泥中16种多环芳烃(PAHs)的气相色谱-质谱测定方法,对该介质中16种多环芳烃(PAHs)的提取、净化和色谱质谱条件进行了优化.采用100 m L正己烷∶丙酮(V∶V,50∶50)混合溶剂索式提取样品中的待测组分,经分子印迹固相萃取柱(MIPs/SPE)净化,内标法定量.结果表明,分子印迹固相萃取柱(MIPs/SPE)对PAHs单体专一吸附效果显著,对中环、高环PAHs的吸附明显,并且基质效应减弱.16种多环芳烃的线性范围为10—5000 ng·m L~(-1),相关系数(R2)不低于0.9978,加标水平为50、250、500 ng·m L~(-1)时,基质平均加标回收率分别为60%—105%,58%—121%和63%—115%,相对标准偏差(RSDs,n=6)为3.8%—9.4%.该方法快速、准确、灵敏度高、重现性好.  相似文献   

4.
建立了四乙基硼化钠衍生、50μm/30μm DVB/CAR/PDMS纤维头顶空固相微萃取、气相色谱质谱仪检测水中三甲基铅和三乙基铅的方法,用于地表水、生活污水和工业废水中三甲基铅和三乙基铅的检测分析.实验优化了顶空固相微萃取条件,研究了萃取纤维、衍生试剂的用量、萃取时间、萃取温度和解析时间对萃取效果的影响.优化条件下,三甲基铅和三乙基铅的检出限分别为0.3μg·L~(-1)和0.2μg·L~(-1),在3个加标水平(5、100、180μg·L~(-1))下,地表水、生活污水和工业废水中目标物的加标回收率分别为81.0%—115%、74.1%—116%和88.4%—111%,相对标准偏差均小于10%.实验操作简单,无需有毒的有机溶剂,且方法灵敏度高,精密度和准确度好,适用于水中三甲基铅和三乙基铅的快速痕量分析.  相似文献   

5.
建立了高效液相色谱串联质谱同时分析环境水体中4种全氟磺酸污染物及4种替代物(3种全氟调聚磺酸及1种氯代多氟醚基磺酸)的分析方法.优化样品p H值、洗脱液用量等固相萃取(SPE)条件,并对萃取柱柱容进行了评估.采用亲水疏水平衡(HLB)固相萃取柱,在p H值为10的条件下对样品进行萃取,萃取柱干燥之后使用9 m L甲醇作为洗脱液分3次对萃取柱进行洗脱.方法在0.1—50.0 ng·m L-1范围内呈现良好的线性关系(r0.998),方法检出限(S/N3)为1.0—62 pg·L-1,加标回收率53.2%—134.1%.测定了来自4个不同地区的河水样品中全氟磺酸及替代物的残留水平.调聚磺酸类污染物中仅发现6∶2 FTS的存在(0.2—0.6 ng·L-1),而氯代多氟醚基磺酸在样品中都有检出(3.7—57.0 ng·L-1).该方法简单、高效,可满足水体中全氟磺酸类污染物及其替代物的检测.  相似文献   

6.
《环境化学》2009,28(4)
酚类物质由于有致毒性而被规定为饮用水和矿泉水中的毒性污染物,欧盟饮用水指导原则规定饮用水和矿泉水中的酚类物质不高于0.5μg·l-1,日本健康,劳动和福利部门规定饮用水中的酚类物质最高含量为5μg·l-1,美国EPA规定五氯(苯)酚最高含量为1μg·l-1,并规定11种常见酚类物质作为美国EPA首要检测的污染物质,带有UV/DAD,电化学检测器,荧光检测器的液相色谱可以对酚类物质进行检测,在线SPE固相萃取和HPLC相结合的技术,能解决传统SPE样品前处理方式的缺点,不需要购买大量SPE萃取柱和消耗大量的人力,戴安公司UltiMate(R)3000液相色谱开发出了大量先进液相色谱方法,例如二元液相,二维液相色谱和在线SPE/HPLC,配备有大体积自动进样器的一台UltiMate 3000液相色谱仪,能够进行在线固相萃取,完成检测瓶装饮用水酚类物质,用二元泵阀切换技术可以替代大体积自动进样器也能做到在线SPE固相萃取.  相似文献   

7.
正环境介质中三唑磷(TAP)残留量低以及提取物组分过于复杂,样品需要经过富集和净化等前处理过程才能进行液相或气相检测.液-液萃取-气相色谱分析小麦地中土壤和秸秆中TAP含量分别达到0.973和1.865 mg·kg-1,气相色谱分析柑桔土水中TAP浓度在1—10μg·L-1[1],液-液微萃取和高效液相色谱分析水和果汁中的TAP残留浓度也取得较高的灵敏度[2].与液-液萃取相比,固相萃取(SPE)技术具有操作简便快速、有机溶剂用量少,且能去除一些杂质等优点.本  相似文献   

8.
应用固相萃取(SPE)及超高效液相色谱-串联质谱(UPLC-MS/MS)技术,建立了快速提取测定水环境中4种四环素类抗生素(四环素、土霉素、强力霉素、金霉素)和6种磺胺类抗生素(磺胺嘧啶、磺胺甲基嘧啶、磺胺二甲基嘧啶、磺胺二甲氧嘧啶、磺胺甲唑和磺胺噻唑)的方法.水样经过HLB小柱浓缩萃取之后以C18柱为分析柱,乙腈和0.1%甲酸水溶液为流动相,采用UPLC-MS/MS多反应监测(MRM)离子模式进行分析.纯水和城市生活污水中抗生素物质检出限分别为0.015—0.12 ng·L-1、0.03—0.09 ng·L-1,平均回收率分别为88.7%—113.5%、73.7%—94.5%,相对标准偏差均在2.6%—10.6%之间(n=8).方法操作简单、定性定量准确,检出限低,能够满足测定各类水环境中四环素类和磺胺类抗生素痕量残留的分析要求.  相似文献   

9.
建立了分散固相萃取-超高效液相色谱-串联质谱法准确测定城市污水中六溴环十二烷(HBCD)和三-(2,3-二溴丙基)异氰脲酸酯(TBC)的方法.对萃取剂用量、萃取时间、淋洗剂、洗脱剂及色谱分离和质谱测定等条件进行了优化.优化后方法为:待测水样加入同位素标记的回收率内标,用0.4 g Silica、C18和HLB(1∶1∶1)混合填料分散固相萃取,回收萃取剂后用5 m L的10%的甲醇水溶液淋洗,8 m L甲醇洗脱,氮吹浓缩,加入同位素标记的进样内标测定.方法在1—200μg·L-1范围线性关系良好,HBCD和TBC的线性相关系数R20.9986,检出限为0.6—1.2 ng·L-1.应用该方法在某大型污水处理厂各工艺段污水中检测出了α-HBCD,浓度水平为1.3—5.4 ng·L-1.该方法操作简单、灵敏度高,尤其适合城市污水复杂基质中HBCD和TBC的分析.  相似文献   

10.
建立了固相萃取-高效液相色谱-串联质谱(SPE-HPLC/MS/MS)联用测定全氟辛烷磺酸(PFOS)和全氟辛烷羧酸(PFOA)异构体的分析方法.以WAX固相萃取小柱为浓缩柱对样品中目标化合物进行富集浓缩,再用HPLC-MS/MS分离检测各异构体,串联质谱采用负离子扫描和多反应监测模式对样品进行分析检测.色谱分离采用梯度洗脱方式,流动相A相为甲醇,B相为60 mmol·L-1氨水/20 mmol·L-1甲酸水溶液(p H=4);选用AscentisExpress F5型色谱柱为分离柱.将建立的方法应用于河水、底泥和贝类中全氟化合物异构体的分析,对3种环境样品的方法检出限(S/N=3)分别为0.05—1.1 ng·L-1、0.025—0.56 ng·g-1和0.025—0.56 ng·g-1.以加标回收实验对建立的分析方法进行评价,自来水、底泥和贝类中11种PFOS和PFOA异构体的加标回收率平均值分别在90.8%—127%、74.0%—124%和76.7%—113%,相对标准偏差(n=5)分别为5.9%—17.2%、2.5%—17.0%和3.30%—11.5%.  相似文献   

11.
本文采用全自动固相萃取-气相色谱-串联质谱(GC-MS/MS)分析水质中9种N-亚硝胺类化合物.水样以10 mL·min~(-1)速度通过Cleanert NDMA-SPE(1000 mg/6 mL)进行富集,用20%的甲醇水溶液淋洗去除杂质和破坏柱填料表层的水膜,再用二氯甲烷溶剂洗脱,收集的固相萃取洗脱液浓缩后进行GC-MS/MS分析.采用Rtx-Wax色谱柱分离,MRM模式下进行检测,内标法定量.实验结果表明,9种目标物在1.00—100μg·L~(-1)范围内线性关系良好,相关系数大于0.999;方法检出限为0.1—0.5 ng·L~(-1).在低、中、高的加标水平下,9种N-亚硝胺类化合物的回收率分别为71%—94%、74%—95%和75%—103%,相对偏差分别为6.7%—15.8%、5.1%—12.3%和4.5%—9.6%.  相似文献   

12.
本文建立了一种检测污水及污泥中4种磺胺类抗生素及其相应的乙酰化代谢物的分析方法,包括磺胺嘧啶(SD)、磺胺甲基嘧啶(SM1)、磺胺二甲基嘧啶(SM2)、磺胺甲恶唑(SMZ)以及它们相对应的乙酰化代谢物.本文采用了固相萃取(SPE)的方法作为前处理,并优化了固相萃取条件.计算了样品中复杂的基质效应,并使用内标法来抵消基质效应.该方法在污水中检测限(LOD)和定量限(LOQ)分别为0.12—2.06 ng·L~(-1)和0.43—5.12 ng·L~(-1),在污泥中分别为0.28—2.31 ng·g~(-1)和0.88—6.77 ng·g~(-1),在污水和污泥中的回收率为分别为70.8%—130.6%,88.0%—129.2%.本方法成功应用于检测污水处理厂中的污水及污泥中的目标化合物.  相似文献   

13.
建立基质固相分散(MSPD)辅助加压溶剂萃取(PLE)-高效液相色谱法测定土壤中16种多环芳烃的方法.土壤样品与弗罗里硅土混匀后装入萃取池,在15 MPa、120℃萃取条件下,丙酮∶二氯甲烷(1∶1,V∶V)作为萃取溶剂,静态提取5min,应用高效液相色谱法荧光检测-二极管阵列检测串联,采用外标法对其进行定量分析.结果表明:16种多环芳烃线性关系良好,相关系数均大于0.9994,利用荧光检测器与二极管阵列检测器的方法检出限分别为0.04—0.8μg·L-1、0.6—20μg·L-1,在低、中、高3个水平下的加标回收率在78.4%—105.8%范围内,测定结果的相对标准偏差为1.2%—4.1%(n=5).  相似文献   

14.
利用气相色谱-质谱联用仪(GC-MS),结合固相萃取技术,建立了同时测定污水中7种对羟基苯甲酸酯和5种甾体雌激素的定量分析方法.结果表明,目标物在40℃衍生化反应60 min可达最佳衍生化效果;最佳萃取剂净化条件为:使用HC-C18型SPE柱,p H=7条件下萃取,洗脱液为乙酸乙酯∶丙酮(1∶1,V∶V).该方法检出限(LOD)为1.8—5.7 ng·L-1,线性范围20—2000 ng·L-1(r0.990),除少量目标物回收率稍高外,大部分目标物的回收率为82.2%—128.5%,相对标准偏差介于4.4%—21.2%之间.  相似文献   

15.
建立了全自动在线固相萃取(online SPE)-超高效液相色谱/三重四极杆串联质谱(UPLC-MS/MS)同时测定水中六溴环十二烷和四溴双酚A的方法.过滤后的水样经自动进样器上样至在线HLB萃取柱,经淋洗液清洗杂质后,采用反冲梯度洗脱将萃取柱上吸附的目标物洗脱到C18色谱分析柱上进行分离,采用串联质谱进行检测.4种目标化合物在相关线性范围内线性良好(r=0.9915—0.9981),回收率为83.2%—114%,相对标准偏差为7.6%—14.5%,方法检出限为0.003—0.014μg·L-1.本方法快速环保,灵敏度和精密度高,适用于测定受污水体中4种溴代阻燃剂的痕量残留.  相似文献   

16.
建立了一种加速溶剂萃取(ASE)-固相萃取(SPE)-高效液相色谱(HPLC)测定土壤中青霉素钠的简单、快速的方法.样品以超纯水为提取溶剂,50℃提取温度为ASE提取条件参数;HLB型固相萃取柱富集净化:6.0mL 5%甲醇淋洗、4.0mL乙腈-甲醇(1∶1)洗脱;高效液相色谱-紫外检测器(HPLC-PDA)测定,检测波长λ=191.1nm,柱温30℃,流动相为乙腈-0.1%甲酸/水(1∶1),采用等梯度洗脱程序,取得较好的检测分离效果.对0.5、2.0、8.0mg·kg-1等3个不同添加浓度水平的青霉素钠平均加标回收率范围为73.1%—89.7%,回收率相对标准偏差RSD范围为1.1%—2.9%(n=5),检出限可达235.0μg·L-1.结果表明,该方法操作简单,快速,准确度和精密度均符合质量控制要求,能够满足环境土壤样本中痕量青霉素钠检测分析的要求.  相似文献   

17.
建立了自来水中6种氯代多环芳烃和15种多环芳烃的固相萃取-高效液相色谱荧光检测分析方法.500 mL水样过C18固相萃取柱富集,经6 mL的50%甲醇水溶液淋洗,10 mL二氯甲烷-正己烷(1∶1)洗脱.目标化合物经色谱柱(SUPELCOSILTMLC-PAH柱,150 mm×4.6 mm,5μm)分离后,荧光检测,外标法定量.结果表明,21种目标化合物在线性范围内线性关系良好,相关系数均大于0.999;目标化合物的加标回收率为70%—98%,相对标准偏差(RSD) 0. 6%—8. 8%;方法的检出限(LOD,S/N=3)为0. 3—5. 0 ng·L~(-1),定量限(LOQ,S/N=10)为1.1—16.7 ng·L~(-1).方法简便快速,可用于自来水中氯代多环芳烃和多环芳烃的检测.  相似文献   

18.
建立了同时检测水中13种典型药品及个人护理品(pharmaceuticals and personal care products,PPCPs)的固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)的分析方法.通过将HLB和WAX萃取柱串联,实现对水中污染物的固相萃取及富集净化,使用0.1%的甲酸水溶液与乙腈进行梯度洗脱,正离子多反应监测的质谱扫描模式(MRM)分析测定.13种PPCPs的检出限(LOD)为0.007—1.1 ng·L~(-1),定量限(LOQ)为0.02—3.8 ng·L~(-1),回收率为54%—97%.应用此方法调查了北京市不同类型水中PPCPs的分布情况,结果表明,该方法选择性强、操作简单、灵敏度高,可用于水样中PPCPs的可靠检测.  相似文献   

19.
建立了一种固相萃取(SPE)前处理,高效液相色谱/质谱联用分析(HPLC/MS)测定水体中痕量新烟碱类杀虫剂(啶虫脒、噻虫胺、呋虫胺、吡虫啉、噻虫啉和噻虫嗪)含量的方法.确立HPLC/MS分析方法,并采用响应曲面法中Box-Behnken实验设计优化了SPE的吸附剂类型和用量、洗脱液类型和用量,获得以100 mg HLB为吸附剂及10 m L甲醇为洗脱液的前处理方法.所建方法适用于分析水中较宽浓度范围(3个数量级:0.9—100 ng·m L~(-1))的新烟碱类杀虫剂,回收率范围为75.4%±0.98%—122%±1.7%.此外,目标物的方法检测限均低于3 ng·L~(-1),相对标准偏差范围为2.99%—7.92%,低于文献值,说明所建方法具有较好的灵敏度和精密度.最后,该方法成功用于分析野外采集的水样,验证了该方法分析环境水体中新烟碱类杀虫剂的适用性.  相似文献   

20.
SPE-LC-MS法检测杭州地区饮用水水源及自来水中的双酚A   总被引:17,自引:0,他引:17  
采用固相萃取 液相色谱 质谱法 (SPE LC MS)对杭州钱塘江流域及杭州地区自来水厂水样中的双酚A进行检测 .在 1 0个采样点均检测出双酚A ,浓度范围在 0 33— 2 5 0 9ng·l- 1 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号