首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
该文以北京大兴南海子公园6种常见园林绿化树种为研究对象,应用气溶胶再发生器对植物叶片PM_(2.5)吸附量进行了定量研究,分析了叶表面微形态特征。结果表明:单位叶面积PM_(2.5)吸附量油松和白皮松最大,其次为柳树、五角枫,杨树和银杏最小,且针叶树种PM_(2.5)吸附能力强于阔叶树种;不同树种单位叶面积PM_(2.5)吸附量均值:4月在(0.008±0.002)~(0.053±0.008)μg/cm2之间、5月在(0.010±0.001)~(0.067±0.017)μg/cm2之间、6月在(0.014±0.001)~(0.328±0.073)μg/cm2之间,从不同月份看,表现为6月(0.093±0.124)μg/cm25月(0.031±0.023)μg/cm24月(0.027±0.019)μg/cm2;油松、白皮松叶表面凹凸不平,粗糙度较大,且气孔密集,开度较大,从而致使其吸附PM_(2.5)能力最强;而杨树、银杏、五角枫叶表面光滑,气孔较少,颗粒物不易附着,且因蜡质的疏水特性,对植物表面具有一定的清洁作用,其吸附PM_(2.5)能力较弱;此外,叶表面存在绒毛有利于植物叶片吸附PM_(2.5)等颗粒物。因此,在绿化造林时可优先考虑种植叶表面粗糙、有绒毛存在的针叶树种,将更有利于PM_(2.5)等颗粒物的吸收,从而提高植物的环保效益。  相似文献   

2.
以北京西山8种针叶树为研究对象,应用气溶胶再发生器对不同植物叶片冬季PM_(2.5)吸附量进行测定,应用环境扫描电镜观察了叶表面微形态特征结构,阐释了不同树种叶表面结构与吸滞PM_(2.5)关系。结果表明:冬季单位叶面积PM_(2.5)吸附量排序为雪松((3.04±0.39)μg/cm~2)油松((2.93±0.32)μg/cm~2)红松((2.87±0.28)μg/cm~2)白皮松((2.79±0.29)μg/cm~2)侧柏((2.19±0.20)μg/cm~2)冷杉((1.89±0.33)μg/cm~2)龙柏((1.80±0.25)μg/cm~2)桧柏((1.75±0.19)μg/cm~2),从冬季不同月份来看,不同树种单位叶面积PM_(2.5)吸附量表现为2月((2.81±0.59)μg/cm~2)1月((2.45±0.53)μg/cm~2)12月((2.33±0.51)μg/cm~2)11月((2.05±0.48)μg/cm~2);雪松、白皮松和油松有大量凹陷和突起,气孔密度和开度较大,叶表面较粗糙,吸滞PM_(2.5)能力强;冷杉、龙柏和桧柏因其叶表面平滑、气孔密度较小,绒毛较少,吸滞PM_(2.5)能力较弱。因此,为提高城市植被的环境效应,可选择叶表面形态有利于吸滞PM_(2.5)等颗粒物的树种。  相似文献   

3.
在3条风沙进京路径上选取10个城市(北线:二连浩特—苏尼特右旗—张家口—北京;中线:额济纳旗—呼和浩特—北京;西线:哈密—张掖—银川—太原—北京)的植物为研究对象,应用气溶胶再发生器对植物叶片颗粒物吸附量进行了定量测定,同时应用环境扫描电镜观察了不同城市树木叶表面微形态特征结构,阐释了不同城市树木叶表面结构与吸滞颗粒物的关系。结果表明:3条线路的PM_(10)吸附量表现为中线(1.57±0.24)μg/cm~2西线(1.51±0.18)μg/cm~2北线(1.50±0.76)μg/cm~2,PM_(2.5)吸附量表现为西线(0.15±0.06)μg/cm~2北线(0.12±0.03)μg/cm~2中线(0.11±0.04)μg/cm~2;不同风沙进京路径植物吸附颗粒物在3-4月和11月是植物吸附颗粒物较高的月份,7月和9月是植物吸附颗粒物较低的月份,植物吸附PM_(2.5)和PM_(10)量均不在风沙源头和终点城市最大,而是在风沙传输路径的中间城市最大;3条风沙进京路径植物吸附PM_(10)约为1.53μg/cm~2,吸附PM_(2.5)约为0.13μg/cm~2;在叶面粗糙、凹凸不平的时期,颗粒物的吸附量均较大,叶片光滑、粗糙度较低的月份,植物颗粒物吸附量均较低。可见,风沙进京路径植物吸附PM_(10)主要来源于新疆和蒙古高原以西的沙漠区域,吸附PM_(2.5)主要来源于新疆和蒙古高原北部,在风沙运移过程中植物吸附颗粒物主要以PM_(10)为主,处于风沙频繁、污染严重、沙尘较大的时间和地区在叶面形态上更有利于吸附颗粒物。研究结果可为政府部门决策和造林治沙工程的实施提供依据。  相似文献   

4.
基于WRF-CMAQ空气质量模型,定量模拟了氨排放对全国城市PM_(2.5)浓度的影响.结果表明,氨排放对全国城市硫酸盐、硝酸盐、铵盐及PM_(2.5)年均浓度贡献率分别为4.2%、99.8%、99.7%和29.8%,氨排放对硫酸盐年均浓度的影响较小,而对硝酸盐和铵盐年均浓度的影响极为显著.氨排放对1、4、7、10月四个典型月PM_(2.5)月均浓度的贡献量分别为20.15μg/m3、12.39μg/m3、13.20μg/m3、14.20μg/m3,其中1月PM_(2.5)受氨排放的影响最大.氨对PM_(2.5)影响较大的地区主要集中在河南、山东、湖北、河北等农业、畜牧业发达、氨排放量集中的地区,对PM_(2.5)年均浓度贡献量均超过20μg/m3.因此,控制氨排放将有效降低PM_(2.5)浓度,特别是可以显著减少硝酸盐和铵盐污染.  相似文献   

5.
《环境科学与技术》2021,44(3):53-62
为探究气象条件变化对PM_(2.5)的分布影响,该研究利用CAMx及WRF模型,分别模拟了中国中东部地区2017-2019年第4季度PM_(2.5)浓度(ρ(PM_(2.5)))分布及气象条件变化,并对"2+26"城市、长江三角洲地区的ρ(PM_(2.5))及气象因子进行时空变化分析。结果表明:2017-2019年,太行山东麓沿线污染最为严重,季度平均ρ(PM_(2.5))达150~250μg/m3,长江三角洲地区季度平均ρ(PM_(2.5))为35~115μg/m3;2019年太行山东麓及燕山南麓地区气象条件优势明显,西北气流频次增加,同时相对湿度下降,大气边界层升高,降水量增加,地区ρ(PM_(2.5))下降6~18μg/m3;长江三角洲沿海地区降水量增加,风速增大,ρ(PM_(2.5))下降8~16μg/m3。数值模拟结果显示,2017-2019年,受降水、相对湿度、边界层、风速以及主导风向的影响,2019年中国中东部地区冬季ρ(PM_(2.5))降低6~18μg/m3,不同区域影响ρ(PM_(2.5))变化的气象因子不同。  相似文献   

6.
为了解2018年春节期间京津冀地区空气污染情况,利用近地面污染物浓度数据、激光雷达组网观测数据,结合WRF气象要素、颗粒物输送通量和HYSPLIT气团轨迹综合分析污染过程.结果表明,春节期间出现3次污染过程.春节前一次污染过程,各站点PM_(2.5)浓度均未超过200μg/m~3;除夕夜,廊坊站点PM_(2.5)峰值浓度达到504μg/m~3,是清洁天气的26倍;年初二~初五,各站点PM_(2.5)始终高于120μg/m~3,且污染主要聚集在500m高度以下,北京地区存在高空传输,800m处最大输送通量达939μg/(m~3?s),此次重污染过程为一次典型的区域累积和传输过程.京津冀地区处于严格管控状态时,燃放烟花爆竹期间PM_(2.5)峰值浓度可达无燃放时PM_(2.5)峰值的3.2倍.为防止春节期间重污染现象的发生,需对静稳天气下燃放烟花炮竹采取预防对策.  相似文献   

7.
利用2012年全年北京市SO_2、NO_y、O_3、CO和PM_(2.5)监测数据,讨论PM_(2.5)和反应性气体的变化特征及其与气象条件的相关关系.结果表明:北京地区2012年PM_(2.5)平均质量浓度为52.0μg/m~3,年波动范围较大,特别是秋冬两季,呈现出慢累积而快清除的变化特征;NO_y、NO、CO、SO_2与PM_(2.5)质量浓度增减呈相同的变化趋势,O_3变化趋势相反;PM_(2.5)质量浓度0~25μg/m~3之间出现的频率最高,为27%;NO_y、NO、CO、SO_2和PM_(2.5)在风速小于3m/s时,随风速增大均呈显著的下降趋势,其中PM_(2.5)的下降率约为25%/m/s,风速大于3m/s后,污染物下降到较低浓度后趋于平缓;清洁天,相对湿度增大对PM_(2.5)质量浓度的影响不显著,而污染天,在较高相对湿度下,PM_(2.5)的质量浓度迅速升高.  相似文献   

8.
于2016年4月、7月、10月和2017年1月利用2台中流量分别在徐州市不同功能区,即生活区、工业区和旅游区采样大气中的细颗粒物(PM_(2.5))样品,测定PM_(2.5)质量浓度及其化学组分(含碳组分、水溶性离子和无机元素),结合化学质量平衡模型(CMB),对PM_(2.5)进行来源解析。研究结果表明:徐州市PM_(2.5)污染的年平均浓度维持在65μg/m~3左右,超过国家环境空气质量标准(GB3095-2012)二级标准(35μg/m3)的0.95倍。冬季全市的PM_(2.5)平均浓度最高,为103.6μg/m~3。根据CMB模型结果,全年PM_(2.5)来源解析,煤烟尘的分担率最高,达23.4%;其次是硫酸盐,达20.5%;硝酸盐的分担率占第三位,为18%,机动车尾气尘和城市扬尘分别为12.3%和11.4%,其他各源类的分担率均小于5%。  相似文献   

9.
为探讨大气PM_(2.5)及其不同组分对人肺上皮细胞A549的毒性作用及其剂量-反应关系,将前期采集的PM_(2.5)颗粒物用不同方法进一步制备PM_(2.5)水溶性组分、PM_(2.5)脂溶性组分和PM_(2.5)单纯颗粒物,将制备的PM_(2.5)颗粒物及其组分以不同浓度(10,50,100,200,400μg/m L)对A549细胞染毒,用MTS法分别在染毒6,10,24,48,72h后测定细胞活力,染毒24h后用ELISA及RT-QPCR法测定炎性因子IL-6和TNF-α表达量,AP位点计数法测定细胞DNA损伤情况.结果表明:除PM_(2.5)水溶性组分外,其余染毒样本高浓度染毒时始终对细胞生长表现出抑制作用,其中低浓度染毒时可在较短时间对细胞生长表现出抑制作用,染毒时间较长时抑制作用减弱或消失,PM_(2.5)水溶性组分对细胞生长抑制作用并不显著;除PM_(2.5)水溶性组分外,其余染毒样本都显著升高了IL-6m RNA的相对表达量和IL-6蛋白的分泌,除PM_(2.5)脂溶性组分外,其余染毒样本都显著升高了TNF-αm RNA的相对表达量;除PM_(2.5)水溶性组分外,其余染毒样本都显著提高了DNA碱基缺失程度.总的来说,PM_(2.5)水溶性组分在抑制细胞活力、造成炎性损伤及DNA损伤方面作用相对较小,而PM_(2.5)所产生的毒性作用并不仅限于其所吸附的复杂成分,其中作为载体的固体核心颗粒对机体可能造成的毒性作用也不容忽视.  相似文献   

10.
不同空气质量等级下环境空气颗粒物及其碳组分变化特征   总被引:2,自引:2,他引:0  
为研究不同空气质量等级下环境空气颗粒物及其碳组分变化特征,于2016年3月在廊坊市对环境空气中PM_(10)、PM_(2.5)和PM1质量浓度及PM_(2.5)中碳组分质量浓度进行了在线监测.结果表明,监测期间廊坊市PM_(10)、PM_(2.5)和PM1质量浓度较高,其分别为204.1、107.9和87.8μg·m~(-3),日变化趋势呈双峰型分布.总体来说,当空气质量越好,PM_(10)、PM_(2.5)、PM1及其碳组分(OC、EC、SOC和POC)质量浓度越低,PM1/PM_(2.5)、PM1/PM_(10)和PM_(2.5)/PM_(10)比值越小.但"中度污染"时,PM_(10)质量浓度最高,且PM1/PM_(10)和PM_(2.5)/PM_(10)达到谷底值;同时OC质量浓度比"轻度污染"略低,而明显低于"重度污染",且主要出现在13:00~23:00,表明"中度污染"时细颗粒物和超细颗粒物占比下降,与其对应的首要污染物相一致.此外,OC/EC比值大于2.0,通过最小OC/EC比值法估算PM_(2.5)中SOC和POC,其浓度均值分别为12.2μg·m~(-3)和5.0μg·m~(-3).  相似文献   

11.
对2013年北京市58 d重污染日PM_(2.5)浓度水平进行了分析,并用克里格插值法统计了重污染期间不同风向PM_(2.5)不同浓度区间的国土面积。结果显示2013年北京市重污染日主要集中在冬季,占到全年天数的15.9%,且重污染日PM_(2.5)平均浓度为218μg/m3;重污染日PM_(2.5)空间分布较为均匀且统计的平均浓度在150μg/m3以上的国土面积约占总面积的82%;重污染期间重度污染(150μg/m3)以上面积占比分别为南风(87%)、东风(81%)、西风(70%)、北风(66%);重污染日不同风向下ρ(NO_3~-)、ρ(NH_4~+)、ρ(SO_4~(2-))之和约占ρ(PM~(2.5))的60%~65%,且各组分浓度相差不大。  相似文献   

12.
为研究鞍山市PM_(2.5)中碳组分的化学特征,于2014年7月和2015年1月在鞍山市建成区6个监测点位采集PM_(2.5)样品,并用热光碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过分析2个季节PM_(2.5)中OC和EC的化学特征、比值及其相关性,以及SOC的估算值,定性分析了鞍山市PM_(2.5)中碳质气溶胶的来源;利用因子分析法,进一步分析了其来源.结果表明,夏季和冬季PM_(2.5)的平均浓度分别为(53.4±18.0)和(124.9±60.1)μg/m3.夏季PM_(2.5)中OC和EC的质量浓度分别为(5.44±0.84)和(2.29±0.49)μg/m3;冬季PM_(2.5)中OC和EC的质量浓度分别为(21.47±12.45)和(4.68±1.79)μg/m3.夏季和冬季各点位的OC/EC值的变动范围分别为2.18~2.70和4.04~4.95.相比冬天,夏季OC和EC的相关性较强.夏季和冬季SOC的估算值分别为2.12,11.95μg/m3.鞍山市大气PM_(2.5)中碳组分主要来源于生物质燃烧源、燃煤源、汽车排放和道路扬尘源.  相似文献   

13.
利用中国环境监测总站2014年12月-2015年11月171个城市的逐小时大气污染资料,对比分析了南北方大气颗粒物和气体污染物的时空分布特征。结果表明:(1)全国出现PM_(2.5)和PM_(10)污染日的频率分别为17.23%和10.33%,PM_(2.5)、PM_(10)具有较好的线性相关性,PM_(2.5)浓度约占PM_(10)浓度的47%,颗粒物和气体污染物的重污染区主要分布在环渤海地区、长三角地区、西北地区、四川盆地和两湖地区。(2)南北方大气颗粒物和气体污染物浓度具有明显的月季变化,从12月到次年3月和6、11月差距大,其他月份小(O3除外),PM_(2.5)/PM_(10)比值在秋末冬初大,其他季节小。(3)北方PM_(2.5)年均浓度为62.28μg/m3,比南方高12.62μg/m3,北方PM_(10)年均浓度为115.98μg/m3,比南方高36.34μg/m~3,虽然北方颗粒物浓度比南方大,但除2015年11月外,PM_(2.5)/PM_(10)北方都小于南方;北方SO_2、NO_2、CO年均浓度分别为38.16、42.28、1 256.67μg/m~3,比南方高18.43、3.56、315.83μg/m3,南北O3年均浓度相当。(4)从日变化看,污染物平均浓度(O3和SO_2除外)白天低于夜间,下降速率白天大于夜间;南北PM_(2.5)、PM_(10)、CO、NO_2平均浓度日变化呈"双峰双谷"型,O3呈"单峰单谷"型;日变化曲线还表明,日间和夜间北方PM_(2.5)、PM_(10)、CO、NO_2平均浓度都高于南方,下降速率也是北方大于南方。  相似文献   

14.
文章在北京城市森林植被区选择2个观测点,采集2个观测点的PM_(2.5)质量浓度数据,并结合北京植物园的气象数据,研究其PM_(2.5)质量浓度变化特征和影响因素,探讨PM_(2.5)质量浓度变化对城市生活的影响。结果表明:被选观测点的PM_(2.5)浓度月变化基本呈"M"型,PM_(2.5)浓度在6月最低(西山公园为(71.01±34.34)μg/m~3,北京植物园为(44.41±31.57)μg/m~3),2月最高(西山公园为(154.07±95.70)μg/m~3,北京植物园为(139.49±100.74)μg/m~3),10月达下半年的最高值(西山公园为(133.45±109.06)μg/m~3,北京植物园为(127.04±109.34)μg/m~3);PM_(2.5)浓度全年均值为西山公园((104.02±26.45)μg/m~3)>北京植物园((82.52±28.18)μg/m~3);PM_(2.5)浓度季节变化呈"V"型在冬季最高,春季次之,夏季最低PM_(2.5)质量浓度季节变化西山公园为冬季((115.46±41.37)μg/m~3)>春季((112.39±18.50)μg/m~3)>秋季((106.37±24.25)μg/m~3)>夏季((81.87±12.60)μg/m~3),北京植物园为冬季((97.35±41.38)μg/m~3)>春季((94.07±12.21)μg/m~3)>秋季((93.17±31.42)μg/m~3)>夏季((61.86±16.70)μg/m~3);森林空旷地的空气质量优于森林内部PM_(2.5)浓度变化主要受地理位置、气象因素、人文因素的影响。  相似文献   

15.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

16.
为考察相对湿度对激光粉尘仪测量室内PM_(2.5)的影响,更客观真实地评价室内PM_(2.5)的污染状况。室温下在实验室环境舱内分别以去离子水、NaCl溶液、CaCl_2溶液、大肠杆菌溶液为水源在加湿器发生的过程中同时记录环境舱内相对湿度和PM_(2.5)的变化情况,考察激光粉尘仪PM_(2.5)实时测量值与相对湿度的关系。结果表明:加湿器加湿过程中相对湿度急剧变化对PM_(2.5)实时测量值有显著影响;初始PM_(2.5)浓度越大相对湿度对PM_(2.5)实时测量值干扰越敏感,当初始浓度为500μg/m~3时,PM_(2.5)实时测量值变动的敏感点相对湿度为60%;水中盐离子、微生物等物质大大增加了液滴对激光的散射作用,水中杂质浓度越高,PM_(2.5)实时测量值越大,NaCl溶液浓度为250mg/L时,PM_(2.5)实时测量值达到1 000μg/m~3以上对应的相对湿度值仅36%。  相似文献   

17.
基于轨迹聚类,结合全球数据同化系统的气象资料以及青岛市PM_(2.5)的浓度监测资料,对2014年1-12月到达青岛市的气团进行了统计分析。利用潜在源区贡献法(PSCF)和浓度权重法分别分析了青岛市PM_(2.5)的潜在污染来源地区及不同地区对青岛市PM_(2.5)的权重浓度贡献。结果表明:在研究期间内,影响青岛市的气团主要有3类:第1类为来自西北内陆的大陆性气团,第2类为海洋性气团,第3类为区域输送气团;其中来自西北内陆的气团占46%,对应的PM_(2.5)浓度为60.86μg/m3,海洋性气团占39.95%,对应PM_(2.5)浓度为45.53μg/m3;区域传输特征气团占14.05%,对应浓度最高,为62.97μg/m3。PSCF分析结果显示:青岛市PM_(2.5)的潜在污染源地区为河南中部、安徽北部、山东西部、内蒙古中部、京津唐地区及长江三角洲附近黄海区域。CWT分析结果表明:对青岛市PM_(2.5)污染的权重浓度贡献较高的为河南中部地区、山东与河北交界地区,蒙古东部,京津唐地区及黄海南部等。区域传输是青岛市PM_(2.5)污染的重要来源。  相似文献   

18.
针对2014年5月24-31日期间江苏省南部的一次典型的灰霾天气过程,结合地面环境空气自动监测站数据(AQI、PM_(10)和PM_(2.5))、近地面能见度数据、激光雷达垂直探空结果、气象条件数据,对此次区域灰霾污染的近地面特征和空间特征进行了分析。发现此次灰霾污染过程可以分为2个阶段:第一个阶段,5月24-25日,空气质量由良逐渐增重为中度污染,其中25日11时AQI峰值达到200,近地面能见度2.2 km。近地面PM_(10)和PM_(2.5)的峰值浓度分别为215μg/m~3和150μg/m~3,该阶段PM_(2.5)/PM_(10)的比值均值达到0.6;无锡地区2.5 km高度范围内分布大量的强消光性粒子,导致消光系数超过0.8 km~(-1),退偏振度不足0.1,以局地球形细粒子为主;第二个阶段,26-31日空气质量再次恶化,污染程度累积,27日23时、29日21时、31日3时达到484、239和231。26-31日,近地面首要污染物是PM_(10),PM_(10)的均值210μg/m3,PM_(2.5)的均值97.7μg/m~3,PM_(2.5)/PM_(10)的比值均值低于0.5;大气中分布的颗粒态污染物粒子的不规则程度增大,大气消光系数略有减弱,约0.6 km~(-1),退偏振度系数大于0.3,说明此阶段大气中含有较多的浮尘粒子。其中,27日消光系数有突然增大的过程,这与江苏地区的秸杆燃烧过程密切。通过后向轨迹与卫星监测的火点分布,表明27、28日的气流轨迹将大量的不完全燃烧的生物质粒子带到观测站点附近。近地面的气象条件分析发现,26-29日,随近地面的大气压力从1 000 h Pa降至993 h Pa,相对温度从80%以上降至不足45%,峰值超过6 m/s,直接使得空气中颗粒物增多。  相似文献   

19.
对2015年3月—2016年2月邯郸市大气中的PM_(10)、PM_(2.5)和PM_(1.0)进行了在线监测,探讨了其质量浓度的变化特征,并分析了其质量浓度与风速、风向的关系。结果表明:邯郸市颗粒物质量浓度水平较高,β射线吸收法所监测的PM_(10_WET)、PM_(2.5_WET)和PM_(1.0_WET)年均浓度值分别为202.5,114.8,81.1μg/m~3,PM_(2.5_DRY)/PM_(10_WET)和PM_(2.5_WET)/PM_(10_WET)分别为0.58、0.70,PM_(1_DRY)/PM_(2.5_WET)和PM_(1_WET)/PM_(2.5_WET)分别为0.58、0.71,PM_(2.5)为PM_(10)中的主要组成,PM_(1.0)为PM_(2.5)中的主要组成。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)质量浓度冬季最高;PM_(10)、PM_(2.5)和PM_(1.0)日变化峰值为上午09:00左右,谷值为下午16:00左右,扬沙、降雨,霾和春节不同条件下PM_(10)、PM_(2.5)和PM_(1.0)差异明显。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)的浓度高值主要分布在风向0°~100°和175°~225°、风速小于1 m/s的情况下。  相似文献   

20.
基于2000年、2003年、2006年、2009年、2014年的遥感影像提取不透水表面数据以及相应年份的PM_(2.5)质量浓度估算值.以不透水表面覆盖率(ISC)为城市化指标来分析城市化对PM_(2.5)质量浓度的影响,分别从城市、县区尺度探讨城市扩张对PM_(2.5)污染时空分布及演变的影响机制,定量研究二者相互关系;以京津冀地区为例,其ISC从2000年的0.7%增长到2014年的1.5%,而PM_(2.5)浓度从45.7μg/m~3飙升到77.3μg/m~3.根据2000与2014年的PM_(2.5)浓度差值,把京津冀地区划分为轻度(0~9.9μg/m~3)、中度(10~29.9μg/m~3)、重度(30~49.9μg/m~3)、严重(50~77μg/m~3)污染区域,相应的不透水表面增长率分别为43.3%、110.5%、165.5%和208.3%.严重污染区域位于北京-廊坊-天津-唐山(沿高速公路G1)和北京-保定-石家庄-邢台-邯郸(沿高速公路G4),伴随着较高的不透水面增长率(208.3%).同时,在2000~2014年期间,京津冀地区ISC空间分布与PM_(2.5)污染空间分布高度一致,以太行山和燕山山脉为界的东南地区的不透水表面增长率为160.0%,显著高于西北地区的增长率50%,同时东南地区的PM_(2.5)浓度增长值45.5μg/m~3也显著高于西北地区的17.0μg/m~3.此外,把京津冀地区174个乡镇按照其ISC划分为5个级别:松散型(0~4.9%)、轻度紧凑型(5%~9.9%)、紧凑型(10%~14.9%)、密集型(15%~24.9%)、高度密集型(25%),乡镇数量分别为42、35、52、34、11,对应的PM_(2.5)浓度均值分别为(42.7±10.5)、(79.9±11.9)、(95.6±15.4)、(99.1±10.8)、(115.3±9.2)μg/m~3.其中松散型乡镇的空气质量较好,而严重雾霾笼罩在高度密集型的乡镇中.结果表明当乡镇ISC为5%和25%时,对区域PM_(2.5)质量浓度带来剧烈的增长.当ISC5%时,PM_(2.5)浓度发生了激烈增长,其比5%的乡镇高了87.2%.当ISC25%时,其PM_(2.5)浓度飙升到(115.3±9.2)μg/m~3,大约是5%乡镇的3倍.结论表明,在城市化进程中,不透水表面扩张对PM_(2.5)污染的加剧带来严重影响,不透水表面扩张应该成为城市空气污染一个不可忽视的影响因素之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号