首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
负载无机铵盐改性活性炭纤维对甲醛去除能力的影响   总被引:1,自引:1,他引:1  
在不同热处理温度(60℃、160℃)和热处理时间(2h、12h)条件下,通过负载不同质量分数的氯化铵、氟化铵、草酸铵、硫酸铵、过硫酸铵等无机铵盐溶液对活性炭纤维(ACF)进行改性实验,并利用扫描电镜(SEM)分析表征改性后的ACF,研究其对甲醛去除率的影响.结果表明,不同无机铵盐对ACF的改性效果良好,甲醛去除率均大于50%.其中,经草酸铵改性后的ACF对甲醛的去除率最高,可达67.7%.SEM观察发现,无机铵盐大多堆积在ACF表面,不能进入其孔径内部,减小了ACF与外界的接触面积,但对其吸附面积影响不大.因此,利用无机铵盐改性ACF来提高甲醛去除率是可行的.  相似文献   

2.
改性活性炭治理室内空气中甲醛的实验研究   总被引:14,自引:3,他引:14  
利用亚硫酸氢钠和碳酸钠改性的活性炭对室内空气污染中甲醛进行了治理研究,考察了颗粒活性炭、粉末活性炭、改性活性炭对甲醛去除率的影响。测试了改性活性炭的平衡吸附量,吸附穿透时间。结果表明,亚硫酸氢钠和碳酸钠改性的活性炭对甲醛的去除率为60%,动态治理后能够达到国家室内空气质量标准。并通过扫描电镜图谱分析了改性活性炭的吸附机理。  相似文献   

3.
以聚丙烯酰胺、甲醛、二甲胺为原料制备出中间产物胺甲基化聚丙烯酰胺(APAM),然后通过酰胺化反应将巯基乙酸(TGA)中的巯基接枝到APAM上,制得新型重金属絮凝剂—巯基乙酰化胺甲基聚丙烯酰胺(MAAPAM)。以含Cu(Ⅱ)水样为处理对象,首先采用Plackett-Burman试验确定出MAAPAM制备条件中的关键影响因素,再通过最陡爬坡试验找出各因素最优区域,最后利用响应面法对MAAPAM的制备条件进行优化。结果表明,由响应面法建立的二阶回归模型显著而失拟项不显著,复相关系数R~2为0.901 0,模型拟合性较好。MAAPAM最佳制备条件为:APAM浓度1.0%、APAM与TGA物质的量比例1∶4、反应介质pH值4.9、反应温度20℃、反应时间3.0 h。经验证,该条件下制备的MAAPAM对水样中Cu(Ⅱ)的实际去除率为99.61%,与模型理论预测值(99.08%)接近,表明采用响应面法优化MAAPAM的制备条件合理可行。  相似文献   

4.
采用单因素实验研究了等离子体装置的电源电压、针长度、针板间距等参数对甲醛去除率的影响规律,采用正交实验探讨了KMnO_4质量分数、浸渍时间、浸渍温度、烘干温度等因素对ACF协同等离子体甲醛去除率的影响,得出实验所需等离子体的最佳参数和ACF的最佳改性条件,并采用扫描电子显微镜(SEM)、X-射线衍射仪(XRD)等分析改性前后ACF的微观形貌和晶体结构。研究表明:等离子体去除甲醛的最佳参数为:针长度为8 mm,针板间距为8 mm,电源电压为9 kV。改性ACF协同等离子体有利于甲醛的去除,ACF的最佳改性条件为:浸泡时间为50 min、浸泡温度为60℃、w(KMnO_4)为3%、烘干温度为50℃。改性ACF协同等离子体甲醛去除率高达96%。  相似文献   

5.
针对粒子电极电催化性能低、电能消耗大等问题,以柱状活性炭(AC)为载体,采用浸渍法制备负载金属的活性炭粒子电极,通过正交试验探究其最优制备条件,并应用Bohem返滴定法和SEM对改性活性炭进行表征。正交试验表明:粒子电极电催化性能受浸渍时间的影响比受浸渍浓度、焙烧时间、焙烧温度的影响更大。不同制备条件下的粒子电极形貌差异很大。在0.1 mol/L的浸渍液中浸渍12 h,400 ℃条件下焙烧4 h得到的粒子电极用于三维电极反应器中降解活性艳红X-3B,染料去除率达到85.97%,COD去除率达到65.61%,对比AC,染料去除率提高了5.29百分点,COD去除率提高了10.12百分点,能耗降低了13%。表明Ni/AC粒子电极可提高其电催化性能,降低能耗。  相似文献   

6.
改性活性炭吸附净化黄磷尾气中的H2S   总被引:1,自引:0,他引:1  
研究了以Cu^2+离子活性溶液制备改性活性炭吸附净化黄磷尾气中H2S的相关问题,考察了改性活性炭制备过程中的浸渍液浓度、干燥温度和焙烧温度的影响,以及温度和氧含量对吸附的影响;并对空白活性炭、改性活性炭吸附前后做SEM表征。研究结果表明,浸渍液浓度0.05mol/L、干燥温度120℃、焙烧温度250℃为改性活性炭制备的最佳条件;吸附反应阶段较适宜的温度为95℃,氧含量为1%;结合扫描电镜初步表明,改性后的活性炭S容量增加,吸附效果明显。  相似文献   

7.
管映兵  王刚  徐敏  常青 《环境科学学报》2017,37(12):4578-4585
为提高含铜废水的处理效果及简化处理流程,以聚丙烯酰胺(PAM)、甲醛、氢氧化钠、巯基乙酸(TGA)为原料,先经羟甲基化反应制备中间产物羟甲基聚丙烯酰胺(MPAM),再通过酰胺化反应将巯基接枝到MPAM分子链上,制备出新型重金属絮凝剂巯基乙酰化羟甲基聚丙烯酰胺(MAMPAM).以水样中Cu(Ⅱ)的去除率为考察目标,采用Plackett-Burman实验、最陡爬坡实验和响应面法中CCD实验优化MAMPAM的制备条件.结果表明,MAMPAM最优制备条件为:MPAM浓度0.31%、MPAM与TGA物质的量比为1∶3.2、反应介质p H值为4.76、反应温度为25℃、反应时间为2 h,在此条件下制备的MAMPAM对Cu(Ⅱ)的去除率为95.30%,与模型的理论预测值94.47%接近,相对偏差仅为0.83%,模型合理可靠.红外分析表明MPAM分子链上成功接上了巯基.MAMPAM对不同初始浓度的含Cu(Ⅱ)水样具有很好的去除效果,Cu(Ⅱ)去除率均能达到90%以上.MAMPAM有望成为一种有效的含铜废水处理剂,具有一定的应用前景.  相似文献   

8.
以酸改性凹凸棒石为载体,采用浸渍法以不同金属氧化物做活性组分进行了脱除甲醛的活性组分筛选,通过正交实验优化制备氧化锰凹凸棒吸附氧化催化剂工艺条件.结果表明,负载9%(质量分数)的锰氧化物,300℃焙烧4h制备的粒度为40~60目的凹凸棒吸附氧化催化剂在初始浓度为9.5552mg·m-3的甲醛空气中,24h时对甲醛的吸附量可达到0.188mg·g-1,甲醛脱除率达到98.35%.傅立叶变换红外光谱(FTIR)及X射线衍射(XRD)测试表明,凹凸棒吸附氧化催化剂对空气中的甲醛在室温下起到了吸附与催化氧化的作用.  相似文献   

9.
采用聚丙烯酰胺、甲醛、二甲胺、二硫化碳、氢氧化钠为原料制备出具有去除重金属性能的絮凝剂二硫代羧基化胺甲基聚丙烯酰胺(DTAPAM).以水样中Cd(Ⅱ)为考察对象,利用Plackett-Burman试验筛选出DTAPAM制备条件中的主要影响因素,根据最陡爬坡试验确定各影响因素水平值的中心点,并以响应面法中的CCD模型对DTAPAM制备条件进行优化.结果表明,CCD法建立的二次多项式模型回归性显著且失拟项不显著,复相关系数R~2为0.9371,模型拟合性良好;DTAPAM最优制备条件为:PAM浓度2.7%、反应物PAM、CS_2、NaOH摩尔比1:2:1.4、预反应温度23℃、预反应时间15min、主反应温度40℃、主反应时间90min.在此条件下制备的DTAPAM对Cd(Ⅱ)实际去除率为95.83%,与模型理论预测值94.08%接近,模型合理可靠.  相似文献   

10.
为提高秸秆活性炭性能及其对AMX(阿莫西林)的吸附效果,研究了青贮秸秆活性炭的制备和改性方法及其对AMX的吸附特性.以青贮玉米秸秆为原料,通过响应面法(RSM),在活化温度为584℃、浸渍比为1:1.9的条件下,制备了AC-S(青贮活性炭)和AC-SA(改性青贮活性炭).通过比表面积和孔径分析,AC-S和AC-SA的SBET(比表面积)分别为1 521、1 347 m2/g,两种活性炭兼具中孔和微孔.研究了吸附动力学、热力学特性及初始ρ(AMX)、pH对吸附结果的影响.结果表明,AC-S和AC-SA对AMX的最大吸附量分别为39.69、45.60 mg/L,均符合伪二级动力学模型和Langmuir吸附等温模型(R20.99),吸附形式主要为化学吸附,在酸性条件下吸附量增加.研究显示,改性后AC-SA的酸性官能团增加45.31%,提高了其与AMX的碱性基团结合能力,因此对AMX的吸附效果更好.   相似文献   

11.
活性炭的再生及循环利用对降低吸附法治理含VOCs废气的成本、减少危废产生量具有重要意义。采用真空热再生法对吸附乙酸乙酯的活性炭进行了再生实验,考察不同再生温度及保温时间对活性炭再生效果的影响及真空热再生法对活性炭的循环再生性能。结果表明:活性炭的损失率随再生温度升高而增大,并且当再生温度<200 ℃时,活性炭损失率最大仅0.7%;在最佳实验条件(200 ℃并保温30 min)下,乙酸乙酯脱附率达到93.8%,再生后活性炭的平衡吸附量为108.1 mg/g。比表面积及孔径分布显示,200 ℃以下的真空热再生对活性炭结构几乎无影响;300,400,500 ℃下真空热再生后活性炭的比表面积较新活性炭分别增加22,19,42 m2/g。在最佳再生条件下循环再生6次后,活性炭对乙酸乙酯的平衡吸附量达到新活性炭的97%,表明真空热再生法对活性炭具有良好的再生性能。  相似文献   

12.
为利用黄磷尾气中的高浓度CO气体,通过钢瓶配气模拟和气相色谱GC-14C测定的方法,选出了净化PH3气体的最佳改性炭;用正交实验法优化了吸附净化实验条件;通过X射线光电子能谱对改性活性炭进行表征。结果表明:铜阳离子改性炭的净化效果最好;最佳实验条件是反应温度95℃、氧含量3%、气体流量0.2L/min、浸渍液浓度0.3mol/L、活性碳粒径4mm和焙烧温度350℃。  相似文献   

13.
采用自制的酚醛树脂基火山灰-活性炭负载Ce稀土催化剂在间歇式反应釜中催化湿式氧化(Catalytic wet air oxidation,CWAO)降解高浓度苯酚废水至可生化要求。发现经过浸渍、固化、炭化3个循环后可以获得9%的含炭量、1 020 m2/g的比表面积、0.57 cm3/g的总孔容并能满足后续反应所需的传质要求。同时研究了不同的炭化升温速率和炭化温度对火山灰-活性炭的性能的影响,发现升温速率为4℃/min、炭化温度为850℃时火山灰-活性炭获得最佳的结构特征。通过最佳工艺制备得到的催化剂,COD去除率达到92.4%,甲醛、苯酚去除率接近100%,BOD5/COD=0.42,满足可生化处理的要求。  相似文献   

14.
活性炭纤维固定化菌对微囊藻毒素MC-LR的去除研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了藻蓝蛋白提取过程中微囊藻毒素MC-LR的释放分布规律,并用活性炭纤维对一株微囊藻毒素降解菌株进行了固定化,考察了不同活性炭纤维预处理方法、活性炭纤维用量、pH值、温度以及MC-LR浓度对固定化藻毒素降解菌去除MC-LR的影响.结果表明,藻蓝蛋白提取过程中MC-LR主要分布在超滤滤液中,占MC-LR总含量的81.2%.固定化藻毒素降解菌去除 MC-LR的效率明显高于非固定化藻毒素降解菌. 藻毒素降解菌用(1+9)盐酸预处理后的活性炭纤维固定化,其去除效果最佳.MC-LR去除的最适条件为:活性炭纤维用量为10g/L,温度为35℃, pH值为8.0.固定化藻毒素降解菌对pH值,温度具有一定的耐受性,能够在pH5~pH9、10℃~35℃范围内有效地去除MC-LR.  相似文献   

15.
海藻酸钠包埋固定化微生物处理含油废水研究   总被引:3,自引:0,他引:3  
采用海藻酸钠固定化包埋活性炭与菌Brevibacillus parabrevis Bbai-1,制备海藻酸钠-活性炭固定化微球。通过活性炭吸附前后的菌浓变化,测定了25℃时活性炭对Bbai-1的最大吸附量。采用正交试验优化了影响海藻酸钠-活性炭固定化微球的物理性质和微生物活性的4个主要因素(海藻酸钠浓度,活性炭含量,种子菌液浓度和交联时间),确定了固定化微球的最佳制备条件:海藻酸钠浓度为3.5%,活性炭含量为0.7%,种子菌液浓度为6×107 cell/mL,交联时间为24 h。并在25℃,原油含量为0.2%,固定化微球与含油培养基的体积比为3:20时,以游离菌作对比,考察了固定化微球降解原油的最佳pH和盐度。结果表明,固定化菌在pH 6~9,盐度为1.5%~3.5%时,原油降解率可达50%以上,比游离菌提高了20%,且具有较高的盐度适应能力和较宽的pH适应范围。  相似文献   

16.
载硫活性炭脱除天然气中单质汞的研究   总被引:1,自引:0,他引:1  
在固定床反应装置上考察了商业载硫活性炭脱除天然气中气态Hg0的吸附性能、影响因素、再生方法以及吸附动力学,同时结合BET,FTIR,XRD等表征手段提出载硫活性炭脱汞机理.结果表明,空速对脱汞效率限制作用有限,空速从12000 h-1提高至48000 h-1,脱除率变化范围在7%以内.增加汞浓度在初始阶段可以提高其脱汞率,增加单位质量活性炭对汞的吸附量,提高温度会增加吸附体系内的活化分子,提高脱汞率,温度在80℃时效果最优,但是温度过高则会产生负面效应.不同阶段的动力学拟合结果表明化学吸附是整个吸附过程的控制步骤.热脱附实验表明载硫活性炭的脱汞温度是在300~450℃,再生后对汞的吸附能力减弱,其原因可归为再生过程中碳硫键的损失和活性炭二次碳化时表面的烧蚀.  相似文献   

17.
李久安  谢翼飞  罗冬  谭周亮  李旭东 《环境工程》2012,30(5):131-134,143
研究了活性炭纤维(ACF)对水中低浓度柴油的吸附特性。通过静态吸附试验,考察了吸附时间、温度和pH等因素对吸附速率和吸附行为的影响。结果表明:ACF吸附速度快,35 min去除率达81.5%;在10~30℃范围内吸附温度越高效果越好,10℃吸附1 h时的去除率为91.4%;pH适应范围广,2.7相似文献   

18.
用活性炭、酚醛树脂和乌洛托品制备了活性炭电极。研究了电极制备过程中黏结剂添加量、活性炭用量以及成型后活性炭的炭化温度和炭化时间对电吸附除盐性能的影响,并利用扫描电子显微镜(SEM)分析了电极的表面形貌。结果表明:当活性炭、酚醛树脂和乌洛托品混合比例为8:1.8:0.2时,电极能够成型,随着黏结剂的比例增加,电极的除盐率降低;随着活性炭用量的增加,吸附平衡的时间增加,除盐率提高,但平衡吸附量降低,当NaCl浓度降低到一定程度时,再增加活性炭用量去除率变化变小,试验选定的活性炭用量为0.45g/片电极;随着炭化温度的升高和炭化时间的增长,活性炭电极电吸附除盐效果明显提高,850℃下炭化2h的电极炭化完全,除盐率是未炭化的电极除盐率的2.08倍。  相似文献   

19.
以炼制生物质油过程中产生的木屑炭为原料,CO2为活化气体,通过物理活化法制备活性炭。考察了活化温度、活化时间及CO2流量对活性炭亚甲基蓝吸附值的影响。采用中心组合实验,运用响应曲面进行工艺参数优化,得出最佳的工艺参数为活化温度850℃,活化时间3.91h,活化气体流量30ml/min,此时由软件预测的亚甲基蓝吸附值为10.66ml/0.1g,得率42.66%,经验证,与实际相符。并对模型进行了检验,验证了其有效性。并选择不同温度下制备活性炭进行N2吸附脱附等温线实验,得到所制备活性炭BET最大可达948m2/g,由BJH理论分可知其中孔比表面积为296m2/g,平均孔径为3.76nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号