首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
改性玉米秸秆对水中砷的吸附   总被引:2,自引:0,他引:2  
以玉米秸秆做原材料,筛选出异丙醇-氢氧化钠-草酸作改性剂,利用改性后的玉米秸秆吸附水体中的三价砷;探讨了其吸附过程的热力学和动力学行为;研究了p H及吸附剂量对吸附效果的影响。实验结果表明,改性玉米秸秆对水中砷具有很好的吸附能力,当进水浓度为1.25 mg/L、吸附剂投加量为0.25 g、温度为25℃、p H值为9时,60 min达到吸附饱和;在此条件下,改性玉米秸秆对三价砷的吸附去除率为94.28%;吸附过程符合准二级动力学方程,等温吸附规律能够同时满足Langmuir和Freundlich吸附等温吸附模型。  相似文献   

2.
邓潇  周航  陈珊  陈齐  彭佩钦  廖柏寒  张平 《环境工程学报》2016,10(11):6325-6331
对玉米秸秆和花生壳炭化制备的生物炭,运用高锰酸钾进行改性,研究其对Cd2+的吸附效果。通过批次吸附实验,考察了两种改性生物炭对Cd2+吸附的初始浓度、pH值、接触时间等因素的影响。结果表明,在pH为6.0,Cd2+浓度为100 mg·L-1,温度为20℃,吸附时间为12 h,吸附剂投加量为1.0 g·L-1条件下,改性玉米秸秆炭和花生壳炭对Cd2+的去除率分别为67.03%和46.10%,与未改性的生物炭相比,吸附率分别提高了3.8倍和6.2倍。改性玉米秸秆炭和花生壳炭对溶液中Cd2+的吸附均符合Langmuir和Freundlich等温吸附模型,最大吸附量分别为68.97和55.55 mg·g-1。两种改性生物炭的吸附行为均符合准二级吸附动力学模型,说明其吸附以化学吸附为主。改性玉米秸秆炭和花生壳炭吸附Cd2+后,可用NaOH溶液进行解吸,解吸4次后,对Cd2+仍有较好的吸附效果,吸附量分别为31.40和24.10 mg·g-1。这说明,高锰酸钾改性玉米秸秆炭和花生壳炭是一种吸附性能高且能够重复利用的去除溶液中Cd2+的吸附材料。  相似文献   

3.
玉米秸秆活性炭的制备及其吸附动力学研究   总被引:2,自引:0,他引:2  
以玉米秸秆为原材料,采用ZnCl2活化法制备玉米秸秆活性炭,吸附次甲基蓝染料废水,进行动力学分析。本实验用Langmuir和Freundlich模型对吸附等温线进行拟合,结果表明,玉米秸秆活性炭对次甲基蓝的吸附与Langmuir方程拟合良好,R2=0.9857。采用Lagergren准一级速率模型、Lagergren准二级速率模型、Bangham动力学方程和Elovich动力学方程分别对秸秆活性炭吸附次甲基蓝溶液进行吸附动力学拟合,通过分析得出吸附过程与Lagergren准二级速率模型拟合最好,R2=0.9979。秸秆活性炭对次甲基蓝的最大吸附量达到909.09 mg/g,具有很高的吸附能力。  相似文献   

4.
以稻草秸秆为原料,在N2氛围中制备活性炭。利用TG/DTG、Boehm滴定、BET比表面积测试、活性炭的工业分析对秸秆在200、300、400、500℃下制备的活性炭形态及其表面化学性质进行了表征。分别比较了原生秸秆、炭化秸秆、乙二胺基秸秆、乙二胺基炭化秸秆用于脱除SO2气体的吸附效果。结果表明:活性炭的炭化得率是随着温度升高而不断下降;随着炭化温度升高,活性炭的pH值、灰分也随之增加,挥发分含量则不断下降,活性炭表面的酸性官能团减少、碱性官能团增多;乙二胺基炭化秸秆的脱硫效果明显,饱和硫容达到了176.4 mg ·g-1。通过研究得出将改性稻草秸秆活性炭应用于烟气脱硫是可行的。  相似文献   

5.
以核桃外果皮制备活性炭及改性活性炭,对制得的活性炭进行表征,研究了5种活性炭对重金属Cu2+的吸附性能。研究表明,以氯化锌为活化剂制得的活性炭,其碘吸附值及表面酸性基团含量均高于磷酸活化制备的活性炭,改性后的活性炭吸附性能明显增强,碘吸附值最高达到678.53 mg·g-1,对Cu2+的最高去除率达到91.43%。吸附量和Cu2+去除率随时间、温度和pH的升高而增大,5种活性炭投加量增加,导致吸附量减小,但Cu2+去除率增大,吸附平衡时间为3 h。5种活性炭对Cu2+的吸附均符合准二级动力学模型。磷酸和氯化锌活化的活性炭吸附等温线符合Tempkin模型,而3种改性活性炭的吸附等温线则较好地符合Langmuir模型。  相似文献   

6.
研究了三价铁改性对不同活性炭(颗粒和粉末)对水中砷的吸附特性的影响。结果表明,三价铁改性有效提高了活性炭对不同形态砷的吸附性能。其中,对于2种活性炭,As(Ⅲ)和As(Ⅴ)的最佳铁离子改性浓度分别为0.1和0.05 mol/L。此时,通过Langmuir等温线方程拟合得到:粉末和颗粒活性炭对As(Ⅲ)的最大吸附量qm分别为2.38 mg/g和9.39 mg/g;而对As(Ⅴ)的qm分别为5.12 mg/g和2.32 mg/g。此外,当溶液的pH从3升高到9的过程中,吸附量先增加后有所下降,当pH 为7时,改性前后的活性炭对砷的吸附量达到最高。  相似文献   

7.
针对普通活性炭对污水厂臭气中甲硫醇吸附量低的问题,采用KMnO4浸渍改性以获得高甲硫醇吸附量的改性活性炭,通过低温氮吸附仪、扫描电子显微镜和Boehm滴定等表征揭示改性后活性炭吸附量提高的原因,并进行改性活性炭吸附甲硫醇的动力学和热力学研究。结果表明:在KMnO_4浓度为1%、温度为25℃、活性炭与浸渍液质量比为8∶100的条件下浸渍6 h,改性活性炭对甲硫醇的静态吸附量最高,达到344.22 mg·g~(-1),是未改性前的4.04倍:改性活性炭对甲硫醇吸附量提高的原因主要是表面碱性基团的增加(是原来的2.53倍),以及微孔容积和比表面积的增加。改性活性炭对甲硫醇的吸附符合准二级动力学模型,同时粒子内扩散模型显示吸附过程由气相扩散和内扩散共同作用;符合Freundlich吸附等温方程,具有多层吸附特征,且吸附容易进行,属于优惠吸附,是一个自发、放热和熵减的过程,升温不利于对甲硫醇的吸附。  相似文献   

8.
污泥-秸秆基活性炭的制备及其对渗滤液COD的吸附   总被引:5,自引:0,他引:5  
以市政污泥与玉米秸秆为原料,采用化学活化法热解制备污泥-秸秆基活性炭,研究其物化性质、热解动力学特性及对渗滤液中COD的吸附性能。考察吸附剂投加量、吸附时间和溶液pH对COD去除率的影响,并用吸附等温线对吸附数据进行了拟合。结果表明,秸秆比例越高,活性炭的吸附碘值和BET比表面积越大,最大可达663 mg/g和902 m2/g;活性炭表面呈不规则的多孔状;秸秆比例为45%的活性炭在最佳实验条件下对COD的吸附去除率为82%;活性炭对COD的吸附符合Langmuir和Freundlich等温模型。  相似文献   

9.
磁性花生壳基活性炭对亚甲基蓝的吸附特性   总被引:1,自引:0,他引:1  
以花生壳为原料,在K2CO3和Fe3O4共活化条件下制备了磁性花生壳基活性炭(MPSAC)。通过扫描电子显微镜、氮气吸附脱附等温线、X射线衍射和振动样品磁强计等手段表征了材料的结构和性质,测定了其对亚甲基蓝的吸附特性,考察了初始pH、吸附时间、MPSAC投加量、亚甲基蓝初始浓度和温度对吸附的影响。结果表明:(1)初始pH对亚甲基蓝的吸附影响较小;吸附时间对亚甲基蓝的吸附效率有明显的影响,在120min时吸附达到平衡,吸附过程符合准二级动力学方程。(2)吸附平衡数据更好地符合Langmuir方程,在25、35、45℃下,MPSAC的理论饱和吸附量分别为617.28、617.28、666.67mg/g。(3)热力学参数吉布斯自由能变0J/mol、焓变0J/mol、熵变0J/(mol·K),说明MPSAC对亚甲基蓝的吸附属于熵变增加的自发吸热反应过程。  相似文献   

10.
以活性白土与玉米秸秆为原材料,KOH为活化剂,高温热解制备白土-秸秆基活性炭,研究其物化性质及其对填埋场渗滤液中COD的吸附能力。考察活性炭投加量、吸附时间和溶液pH对COD去除率的影响,并用吸附等温线对吸附数据进行拟合。结果表明,适量的活化剂可以提高活性炭的碘吸附值和BET表面积,碱料比为0.4时,二者达到最大值,分别为342.9 mg·g-1、420.34 m~2·g-1;最佳活性炭表面呈不规则的多孔状,以中孔为主,最佳实验条件下对COD的去除率可达84%;活性炭对COD的吸附符合Langmuir和Freundlich等温模型。  相似文献   

11.
以玉米秸秆、稻壳在350~500℃制成的生物质炭作为吸附剂,研究其对溶液中Cd2+的吸附特性。通过模拟实验,考察了初始pH、生物质炭用量、吸附时间和Cd2+的起始浓度对吸附的影响。结果表明,2种生物质炭对Cd2+的吸附反应适应pH范围较宽(4.0~7.0);玉米秸秆炭和稻壳炭对Cd2+的吸附速度较快,分别在10和20 min时达到吸附平衡;玉米秸秆炭对溶液中Cd2+的吸附遵循Langmuir等温线模型,而稻壳炭对Cd2+的吸附遵循Freundlich等温线模型。在实验设定的条件下,玉米秸秆炭对溶液中Cd2+的吸附能力强于稻壳炭。  相似文献   

12.
微波改性活性炭的吸附性能   总被引:3,自引:0,他引:3  
利用微波辐照技术代替传统的加热技术在N2 气中对煤质活性炭进行改性 ,以期提高活性炭的吸附性能。通过正交实验法 ,探讨了微波功率、辐照时间及样品粒径 3种因素对改性活性炭吸附效果的影响。结果表明 ,微波加热提高了活性炭的吸附能力 ,微波功率和辐照时间是决定改性活性炭吸附性能的关键因素 ,并通过对改性前后活性炭的孔隙结构和微结构变化进行分析 ,来讨论其改性机理。  相似文献   

13.
微波改性活性炭的吸附性能   总被引:18,自引:0,他引:18  
利用微波辐照技术代替传统的加热技术在N2气中对煤质活性炭进行改性,以期提高活性炭的吸附性能。通过正交实验法,探讨了微波功率、辐照时间及样品粒径3种因素对改性活性炭吸附效果的影响。结果表明,微波加热提高了活性炭的吸附能力,微波功率和辐照时间是决定改性活性炭吸附性能的关键因素,并通过对改性前后活性炭的孔隙结构和微结构变化进行分析,来讨论其改性机理。  相似文献   

14.
15.
废弃物基活性炭吸附挥发性有机污染物特性的研究   总被引:3,自引:3,他引:0  
研究了废弃物基活性炭对挥发性有机污染物中的典型组分--甲苯的吸附特性.结果表明,废弃物基活性炭吸附甲苯等温线的类型系优惠型吸附等温线,表明具有良好的吸附能力;同时其吸附甲苯时穿透时间的对数与甲苯入口浓度的对数之间具有良好的线性相关性,即可由吸附高浓度甲苯时的穿透时间估算低浓度时的穿透时间;动态吸附时废弃物基活性炭的中孔对甲苯亦具有一定的吸附性能.  相似文献   

16.
甲胺作为一种具有代表性的胺类恶臭气体,是工业中常见的原料与中间体,广泛存在于污水处理过程中。其嗅阈值为0.021mg/m3,稳定且难以生化降解,会影响人体健康。同时,居民区人口密集,工业区与市政设施在部分地区距离居民区较近,因此甲胺是急需治理的大气污染物之一。以方便高效且应用性强的氧化方式对活性炭进行改性并应用于气态甲胺处理。当达到穿透点(出口质量浓度为5mg/m3,穿透率约2%)时,HNO3改性活性炭最高穿透吸附量为517.30mg/g,是原始活性炭的45.7倍。通过对比改性前后活性炭的表面特征,并用吸附动力学数据研究了甲胺的吸附特性,表明甲胺在HNO3改性活性炭上的吸附是物理吸附和化学吸附的结合。当接近平衡时,吸附速率通过颗粒内扩散来控制。  相似文献   

17.
改性玉米秸秆吸附Cu^2+的动力学和热力学   总被引:2,自引:0,他引:2  
本研究用ZnCl2作为活化剂,使用功率640W的微波照射4min的方法制备改性玉米秸秆。考察投加量、pH、吸附时间对吸附性能的影响,并对等温吸附特征、吸附动力学和热力学进行了系统研究。结果表明:投加量为0.2g,pH为6,改性玉米秸秆对Cu^2+具有很好的吸附效果,吸附在8h后达到平衡。该吸附过程符合Langmuir及Freundlich等温吸附模型和准二级动力学方程,其反应的吉布斯自由能△G〈0,为自发反应过程。  相似文献   

18.
改性活性炭对废水中铬离子的吸附   总被引:3,自引:0,他引:3  
改性活性炭被广泛应用于吸附水体中重金属离子,但关于铁改性活性炭吸附性能的研究报道甚少。本研究对活性炭进行铁改性处理,并将之应用于水中的铬离子吸附,考察了吸附时间、溶液pH对改性活性炭吸附Cr(Ⅵ)效果的影响。实验结果表明,在25℃下,pH为3,吸附时间为300 min时,其对Cr(Ⅵ)的去除率为91.4%。铁改性活性炭对铬离子的吸附机理服从准二级动力学方程,该吸附剂吸附等温线服从Langmuir方程,饱和吸附量为28.82 mg/g。  相似文献   

19.
表面活性剂改性活性炭对阳离子染料的吸附   总被引:3,自引:1,他引:2  
张蕊  葛滢 《环境工程学报》2013,7(6):2233-2238
以阴离子表面活性剂十二烷基硫酸钠(SDS)为改性剂对粉末活性炭(AC)改性,研究了SDS在活性炭表面的吸附稳定性,用比表面积测定仪、Zeta电位测定仪对改性前后活性炭进行表征,并将其用于吸附模拟废水中的阳离子染料。结果表明,改性剂SDS浓度等于临界胶束浓度时,改性后活性炭(SDS-AC)对SDS吸附稳定,SDS在纯水和染料溶液中的解吸率分别为19.4%和1.6%。pH对活性炭吸附阳离子橙染料影响较小,SDS-AC和AC对染料的吸附平衡时间分别为4 h和12 h,SDS-AC和AC对阳离子橙染料的吸附动力学模型符合拟二级反应模型,吸附等温线更符合Langmuir吸附等温方程,SDS-AC对阳离子橙染料的最大吸附量较AC提高47.8%,SDS-AC对阳离子橙染料的吸附机制为物理吸附和化学吸附共同作用下的单分子层吸附,其中化学吸附是主要控速步骤。  相似文献   

20.
水蒸气对改性椰壳活性炭吸附VOCs的影响   总被引:1,自引:0,他引:1  
选取甲苯、甲基丙烯酸甲酯、吡啶3种不同极性的有机物作为吸附质,改性椰壳活性炭作为吸附剂,使用穿透曲线法研究了水蒸气对这3种VOCs在活性炭上吸附行为的影响,并同时讨论了水蒸气预处理对活性炭吸附的影响。结果表明,改性椰壳活性炭对3种有机废气均具有良好的吸附性能,但水蒸气的存在对极性小的甲苯吸附影响较大,尤其当甲苯浓度较低时,水分子易与甲苯产生竞争吸附。在对活性炭吸湿预处理后发现,吡啶、甲基丙烯酸甲酯分子可以置换出活性炭预先吸附的水分子,并且通过低温水蒸气加热再生法可以方便地完成活性炭再生过程,重复再生率可以维持在85%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号