共查询到20条相似文献,搜索用时 62 毫秒
1.
川南自贡市大气颗粒物污染比较严重, 2015~2018年PM_(10)和PM_(2.5)平均浓度分别为(95.42±9.53)μg·m~(-3)和(65.95±6.98)μg·m~(-3),并有明显的下降趋势,冬季PM_(10)和PM_(2.5)浓度远高于其它季节, 1月平均浓度最高,分别为(138.08±52.29)μg·m~(-3)和(108.50±18.05)μg·m~(-3),夏季平均浓度最低.PM_(2.5)与PM_(10)的平均比值为69.12%,冬季比值约为夏季的1.17倍,空气污染以PM_(2.5)为主.采用拉格朗日混合单粒子轨迹模型(HYSPLIT)和全球资料同化系统的GDAS气象数据,对自贡市细颗粒物(PM_(2.5))浓度和逐日72 h后向轨迹进行计算和聚类研究,利用潜在源贡献分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨不同季节影响自贡市PM_(2.5)浓度的潜在源区以及不同源区的污染贡献.结果表明,自贡市近地面四季多受东南风、偏西风和西北风控制,高浓度PM_(2.5)多出现在0~2 m·s~(-1)的低风速区;不同季节、不同输送路径对自贡PM_(2.5)污染影响的差异显著,春季主要受到来自偏西和偏北方向短距离输送气流的影响,夏季污染轨迹主要来自短距离输送的东南气流,秋季主要受来自资阳,经遂宁、重庆和内江的短距离输送气流的影响,冬季除受到资阳、遂宁和内江等周边城市的影响外,还受到来自西藏中部的远距离输送气流影响;除夏季外,自贡市潜在源区主要位于重庆西部与川南交界区域,冬季的主要贡献区范围最广、贡献程度最大,夏季潜在源区范围最小且贡献程度最弱. 相似文献
2.
基于2015~2021年海南岛环境监测数据和气象观测数据,利用后向轨迹模型、 聚类分析、 多元线性回归方法、 潜在源区贡献因子算法和权重轨迹方法等探讨了海南岛PM2.5污染特征,影响因素及潜在贡献源区. 结果表明,海南岛PM2.5浓度具有明显的季节性变化特征,冬季ρ(PM2.5)最高(22.6 μg·m-3),秋季和春季次之(17.38和16.53 μg·m-3),夏季最低(9.79 μg·m-3). 近7年海南岛共有30 d出现PM2.5浓度超标,且年平均和4季PM2.5浓度均出现显著的下降趋势,其气候倾向率[μg·(m3·a)-1]分别为-0.97(年平均)、 -1.09(春季)、 -0.61(夏季)、 -0.83(秋季)和-1.25(冬季). 海南岛PM2.5浓度与气态污染物高度相关,相关系数分别为0.471(SO2)、 0.633(NO2)、 0.479(CO)和0.773(O3-8h),均达到了0.01的显著性水平. 海南岛PM2.5浓度与平均风速和大气压呈正相关关系,与降水量、 相对湿度、 日照时数、 平均气温和总辐射呈负相关关系,其中平均气温、 相对湿度和太阳总辐射是主控气象因子. 后向轨迹和潜在贡献源区分析表明,冬季和秋季受来自内陆地区的气流影响时,海南岛平均的PM2.5浓度普遍偏高(≥20 μg·m-3),福建、 浙江、 湖南、 江西、 广东和广西等省份是海南岛PM2.5主要潜在贡献源区. 相似文献
3.
利用Traj Stat软件和全球资料同化系统数据,计算了2014—2016年银川市逐日72 h气流后向轨迹,并采用聚类分析方法,结合银川市同期PM~(10)和PM~(2.5)质量浓度数据,分析了银川年及四季气流轨迹特征及其对银川颗粒物浓度的影响.同时,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨了影响银川颗粒物质量浓度的潜在源区及不同源区对银川颗粒物质量浓度的贡献.结果表明,输送距离最长、高度最高、移速最快的西北气流轨迹占总轨迹的比例最高,达66.7%,且气团移动速度和高度与轨迹距离呈正比;输送高度较低、距离最短、移速最慢的北方气流轨迹占总轨迹数的24.3%;东南气团占总轨迹数的9%,输送距离和移速介于前两者之间,但输送高度较西北气流和北方气流低.四季各类气流轨迹变化特征与年变化特征基本一致,春、秋、冬三季,中、短距离西北气流占气流轨迹总数的比例最高,夏季东南气流占比最高,且夏季南方气流和北方气流占比较春、秋两季高,冬季未出现南方气流和北方气流,春季和冬季气流轨迹输送距离普遍比夏季和秋季长;春、夏、秋三季,偏南气流的输送高度均最低,四季长距离西北气流的输送高度均最高.年及四季都表现为西北气流轨迹对应的银川PM_(10)和PM_(2.5)平均浓度均较高,是影响银川颗粒物质量浓度的最重要输送路径,其次是东南气流轨迹,北方气流轨迹对银川颗粒物浓度影响较小.PSCF和CWT分析发现,位于新疆、甘肃、蒙古国、内蒙古、青海的西北源区及四川、陕西的东南源区是影响银川PM_(10)和PM_(2.5)浓度的两个主要潜在源区,各季节区域范围有所差异. 相似文献
4.
利用2018年3月—2021年2月环境和气象数据对皖南地区铜陵市大气颗粒物的污染特征和潜在贡献源进行了系统性研究.铜陵市大气颗粒物污染具有明显的季节变化特征,冬季污染物浓度最高,PM2.5和PM10平均为(60.3±31.0)μg·m-3和(89.2±42.2)μg·m-3.计算发现PM2.5/PM10超过0.5,铜陵市的大气颗粒物污染问题与细颗粒物关系密切.后向轨迹聚类分析表明铜陵市大气颗粒物的输送路径具有季节性差异.春季以西北、东北和西南方向气流为主,占比83.73%;夏季以东南和南部方向气流为主,占比82.90%;秋季以东北气流为主,占比51.00%;冬季则是以北方和西北气流为主,占比69.81%.其中,冬季气流轨迹所对应的PM2.5和PM10的浓度最高,平均为59.7和92.0μg·m-3;夏季最低,平均为23.8和43.8μg·m-3.潜在源贡献因子(WPSC... 相似文献
5.
利用TrajStat软件和全球资料同化系统数据,计算了2005~2016年北京市逐日72h气流后向轨迹,采用聚类分析方法,结合北京同期PM2.5逐日质量浓度数据,分析北京市年及四季后向气流轨迹特征及其对北京市颗粒物浓度的影响,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨研究时期内不同季节影响北京市颗粒物质量浓度的潜在源区以及不同源区对北京颗粒物质量浓度的贡献.结果表明,就全年而言,西北输送气流占总轨迹的比例最高,达59.97%,且其输送距离最远、输送高度最高、移速最快.输送高度最低、距离最短、移速最慢的东南气流占比次之,为27.64%,东北气流占比最低为12.40%,其移速和输送距离介于前两者之间.主要污染轨迹来自山东、河北,其次为来自俄罗斯、蒙古国和内蒙古荒漠戈壁地区的西北气流.PSCF和CWT分析发现,蒙中、晋中、冀西南、豫北及鲁西是影响北京PM2.5的主要潜在区域.而不同季节、不同输送路径对北京PM2.5污染影响的差异显著,春季主要受来自蒙晋交界区域的短距离输送气流影响,潜在源区位于冀南、鲁西、豫东和皖西北地区,夏季污染轨迹来自鲁、晋地区,潜在源区为豫东北、皖北和苏北地区;秋季主要受来自冀南地区的短距离气流影响,潜在源区为晋北、冀南、豫北和鲁西地区,冬季主要受来自蒙古国中西部和蒙中地区的远距离输送气流影响,潜在源区主要在冀南、鲁西、豫北、晋和蒙西地区. 相似文献
6.
基于2015~2022年苏州市PM2.5和O3浓度及其气象资料,分析两种污染物浓度的长期变化特征和不同污染类型时的气象特征,采用HYSPLIT后向轨迹模型和聚类分析等方法,分析PM2.5和O3主要输送路径和潜在源区.结果表明:①2015~2022年,苏州市PM2.5年浓度均值逐年下降,2020~2022年年浓度均值达到国家二级标准;O3年评价值在163~173 μg·m-3之间,均超出国家二级标准;2017之后,O3的年超标天数始终高于PM2.5;复合污染天数自2015年的9 d持续下降至2020年的0 d,此后未出现复合污染.②PM2.5和O3污染最严重季节分别在冬季和夏季;PM2.5污染易出现在低温高湿的天气,O3污染易出现在高温低湿的天气;PM2.5和O3分别在西北和东南风向上污染较为严重;PM2.5和O3在夏季呈现强正相关性,相关系数最高达0.73. ③通过聚类分析发现,春季来自河北省的内陆中短距离轨迹2和冬季来自陕西省的内陆中短距离轨迹4容易造成PM2.5浓度增加;夏季来自山东省的内陆中短距离轨迹1和春季来自河北省的轨迹2容易造成O3浓度增加. ④潜在源区分析表明,PM2.5在春冬季节的潜在源区主要分布在安徽省、河南省和湖北省,秋季时的潜在源区主要位于湖北省和江西省等地区.春夏季O3的潜在源区主要位于京津冀地区、山东省、河南省和山西省等地区.最后提出推进苏州市PM2.5与O3污染协同控制工作的相关建议. 相似文献
7.
为探讨成都平原大气颗粒物中水溶性离子的污染特征,识别水溶性离子的组成、分布和时空变化,有针对性地控制重污染和灰霾天气,于2013年8月~2014年7月,在成都平原的5个监测点位共采集1 476个颗粒物样品,应用离子色谱法对PM10和PM_(2.5)中8种无机水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+)、Cl~-)进行测量.结果表明在观测期间,PM_(2.5~10)和PM_(2.5)中无机水溶性离子总量分别为11.35μg·m-3和36.93μg·m-3,分别占ρ(PM_(2.5)~10)和ρ(PM_(2.5))的37.8%和46.6%;其中二次离子(SO_4~(2-)、NO_3~-和NH~+4,SNA)约占各自水溶性离子总量的81.1%和89.9%.水溶性离子质量浓度冬季最高,春秋季相当,夏季最低.ρ(SO2-4)/ρ(PM_(2.5))夏秋季较高,而ρ(NO_3~-)/ρ(PM_(2.5))冬季最高,夏季最低.SNA、Cl~-、K~+大多分布在PM_(2.5)中,Ca~(2+)和Mg~(2+)主要分布在PM_(2.5~10)中.PM_(2.5)基本呈中性,水溶性离子主要以(NH_4)_2SO_4、NH_4NO_3、KNO_3、NaCl、KCl等形式存在.ρ(NO_3~-)/ρ(SO_4~(2-))揭示固定源依然是PM_(2.5)的主要来源.硫氧化速率(SOR)和氮氧化速率(NOR)年均值分别为0.31和0.13,SOR夏季最高,NOR冬季最高,二者变化趋势相反.成都平原PM_(2.5)呈区域性复合污染特征,SNA是造成ρ(PM_(2.5))增加的主导因素. 相似文献
8.
为分析北京市APEC期间强化减排措施对大气细颗粒物中类腐殖酸(humic-like substances,HULIS)浓度及污染特征的影响.对APEC前后样品进行了碳质组分(OC/EC)、水溶性有机碳(water-soluble organic carbon,WSOC)、HULIS和水溶性离子分析,研究发现APEC采样期间大气颗粒物中HULIS的浓度范围为1~15μg·m~(-3).HULIS浓度在会议减排前、中和后期分别为7.99、5.83和7.06μg·m~(-3).会议减排对降低HULIS浓度起到了一定作用.在会议期间HULIS的浓度下降程度明显快于EC与WSOC.会议之后HULIS的浓度上升程度明显慢于OC、EC、WSOC和PM_(2.5);HULIS占PM_(2.5)的值在采样期间变化不大,在采样期间、会议减排前、中和后期分别为13.60%、13.59%、14.02%和12.22%.HULIS-C/OC的值和HULIS-C/WSOC的值依次为28.95%、35.51%、28.37%、19.93%和52.75%、59.58%、51.54%、45.39%.HULIS与湿度呈显著正相关,与风速呈显著负相关;生物质燃烧和二次转化可能是北京大气颗粒物中HULIS重要来源. 相似文献
9.
利用2014年12月—2015年11月苏锡常地区国控大气环境质量监测站发布的逐时数据,分析了研究区PM_(2.5)浓度的季节变化和空间分布特征,并利用HYSPLIT模型分析了大气污染物的输送路径及苏锡常地区PM_(2.5)的潜在源区.结果表明,苏锡常地区PM_(2.5)浓度日均值变化趋势基本一致,均呈现冬季高、夏季低的规律.PM_(2.5)浓度四季空间差异显著,不同监测站之间的差异较小.四季PM_(2.5)浓度与其它污染物之间相关性显著.单位面积污染物排放量与空气质量分布的空间错位,表明该地区PM_(2.5)污染与区域性污染物迁移有较大关系.苏锡常地区气流后向轨迹季节变化特征明显,冬、春、秋季的气流主要来自西北内陆地区,夏季气流以东南和西南方向输入居多.聚类分析表明,来自内陆的污染气流和来自海洋的清洁气流是苏锡常地区两种主要输送类型,外源污染气流不仅直接输送颗粒物,还贡献了大量的气态污染物.山东南部、江苏西部、安徽东部、浙江北部及江西西北地区对苏锡常冬季PM_(2.5)浓度贡献较大,春、夏、秋季的潜在源区主要分布在苏锡常本地和周边城市. 相似文献
10.
基于2019年秋季海南省空气质量和气象监测数据,结合相关分析、HYSPLIT后向轨迹模型、PSCF (潜在源贡献因子)和CWT (浓度权重轨迹)等分析方法对海南省4次O3污染过程特征及潜在源区进行深入分析.结果表明:①过程1和过程3分别发生在9月21~30日和11月3~11日,持续时间达到了10 d和9 d,ρ(O3-8h)(最大8 h平均)分别为145.52 μg ·m-3和143.55 μg ·m-3.过程2和过程4出现在10月18~21日和11月20~25日,持续时间为4 d和6 d,ρ(O3-8h)分别为130.79 μg ·m-3和115.46 μg ·m-3.②气压偏高,降水偏少,相对湿度偏低,日照时数偏长和太阳辐射偏强,是造成海南省出现O3污染天气的有利气象条件.偏北风风场控制下有利于O3-8h浓度上升,不同风速大小会影响海南省O3-8h浓度高值区分布.③ O3污染较为严重的过程1和过程3的影响气流发散度较大,有来自内陆地区和东南沿海地区两支气流,而O3污染较轻的过程2和过程4的影响气流较为集中,多为东南沿海气流.④潜在贡献源区分析表明,浙江省、江西省、福建省和广东省等地是2019年秋季海南省O3污染外源输送的主要源区,其中珠三角地区和广东省西部WPSCF值和WCWT值分别为大于0.36和大于90 μg ·m-3. 相似文献
11.
对2017年南京市区7个自动空气质量监测点的PM_(2.5)质量浓度ρ(PM_(2.5))数据进行分析,采用克里金(Kringing)空间插值法、气流运动轨迹聚类、潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT)探讨了四季大气中ρ(PM_(2.5))的时空分布特征和潜在来源。结果显示,四季大气中ρ(PM_(2.5))均值由高到低依次为冬季(65. 54μg/m~3)、春季(41. 70μg/m~3)、秋季(35. 18μg/m~3)和夏季(23. 56μg/m~3),秦淮区四季大气中ρ(PM_(2.5))均最高。春季南京大气中ρ(PM_(2.5))易受黄海海岸和北方大陆性输送气流的影响,来自黄海方向的气流轨迹2贡献比例达51. 65%,对应的ρ(PM_(2.5))为50. 91μg/m~3;夏季南京大气中ρ(PM_(2.5))主要受江苏、东部海洋和南部沿海城市输送气流的影响,其中源自江苏的气流轨迹1对南京大气PM_(2.5)贡献比例最大(33. 64%),气流轨迹对应的ρ(PM_(2.5))为35μg/m~3;秋季南京大气中ρ(PM_(2.5))易受短距离的偏北气流影响,来自山西南部,河南中部、安徽中部的气流轨迹5对应的ρ(PM_(2.5))最高,出现概率(21. 11%)和贡献比例(27. 81%)均较高;冬季南京大气中ρ(PM_(2.5))主要受北方大陆性输送气流影响,来自俄罗斯、蒙古国东部、河北北部、北京、天津、山东中部的长距离气流轨迹4对应的ρ(PM_(2.5))最高,达109. 8μg/m~3,其贡献比例为26. 86%。PSCF和CWT分析发现,安徽、山东、浙江与江苏交界和黄海海岸是影响南京市空气质量的主要潜在源区,此外,湖北、北京、天津以及渤海海岸也是南京大气PM_(2.5)的潜在源区。 相似文献
12.
基于南京市空气质量数据和NCEP全球再分析资料,利用后向轨迹模式计算了2019年3月至2020年2月以南京城区为受体点的逐小时气团24 h后向轨迹,并将后向轨迹数据和PM2.5浓度数据结合,进行轨迹聚类和潜在源区分析.结果表明,研究期间南京市ρ(PM2.5)平均值为(36±20)μg·m-3,超过国家二级标准限值的污染天数为17 d,ρ(PM2.5)的季节变化特征明显:冬季(49μg·m-3)>春季(42μg·m-3)>秋季(31μg·m-3)>夏季(24μg·m-3),全年PM2.5浓度和地面气压显著正相关,而跟气温、相对湿度、降水量和风速均为显著负相关关系;春季气团输送路径为7条,其余季节均为6条,其中,春季的西北路和东南偏南路,秋季东南路和冬季西南路是各季主要的污染输送路径,均具有传输距离短,气团移动慢的特点,说明静稳天气下本地累积是PM2.5出... 相似文献
13.
Deping Li Jianguo Liu Jiaoshi Zhang Huaqiao Gui Peng Du Tongzhu Yu Jie Wang Yihuai Lu Wenqing Liu Yin Cheng 《环境科学学报(英文版)》2017,29(6):214-229
Trajectory clustering, potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) methods were applied to investigate the transport pathways and identify potential sources of PM2.5 and PM10 in different seasons from June 2014 to May 2015 in Beijing. The cluster analyses showed that Beijing was affected by trajectories from the south and southeast in summer and autumn. In winter and spring, Beijing was not only affected by the trajectories from the south and southeast, but was also affected by trajectories from the north and northwest. In addition, the analyses of the pressure profile of backward trajectories showed that backward trajectories, which have important influence on Beijing, were mainly distributed above 970 hPa in summer and autumn and below 950 hPa in spring and winter. This indicates that PM2.5 and PM10 were strongly affected by the near surface air masses in summer and autumn and by high altitude air masses in winter and spring. Results of PSCF and CWT analyses showed that the largest potential source areas were identified in spring, followed by winter and autumn, then summer. In addition, potential source regions of PM10 were similar to those of PM2.5. There were a clear seasonal and spatial variation of the potential source areas of Beijing and the airflow in the horizontal and vertical directions. Therefore, more effective regional emission reduction measures in Beijing''s surrounding provinces should be implemented to reduce emissions of regional sources in different seasons. 相似文献
14.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响.通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM_(2.5)的潜在污染来源和不同潜在源区对郑州市大气PM_(2.5)浓度的贡献.结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM_(2.5)浓度;郑州市冬季PM_(2.5)的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM_(2.5)污染水平也有着较大的影响和贡献. 相似文献
15.
为分析APEC会议前后北京地区PM2.5变化特征,利用中国科学院大学雁栖湖校区超级站在2014年10—12月的连续观测数据,对APEC会议前后北京地区污染物分布及变化特征、气象影响因素和气团传输路径特征进行了分析. 结果表明:APEC会议期间北京地区减排效果显著,ρ(PM2.5)平均值比会前下降了60.5%. 气象条件对污染物扩散起到积极作用,APEC期间平均风速为1.40 m/s,平均相对湿度为31.9 %,近地面气象条件优于APEC会前、会后. 北京地区受到外来污染物输送的影响,在2.00~3.00 m/s的南风下易发生来自南部地区的PM2.5和SO2输送. APEC会议期间北京地区主要受来自西北地区的高速、高海拔气团控制,其出现频率为39.6%,远低于APEC会前 (15.9%)和会后(20.8%),而来自南部地区的低速、低海拔污染气团的出现频率仅为2.1%,扩散条件总体良好. 研究显示,除了减排措施有效削减了污染物排放以外,有利的气象条件也是APEC会议期间北京地区保持良好空气质量的重要因素. 相似文献
16.
采用PM2.5质量浓度长期连续观测资料,结合地面气象资料和后向轨迹方法,分析2009-2018年天津地区PM2.5质量浓度的长期变化趋势,并探讨气象条件对其浓度变化的影响.结果表明,2013年受不利天气影响,PM2.5质量浓度达到近10 a来的峰值,其后逐年下降,2018年年均值降至52 μg·m-3,与优良天气和重污染及以上天气发生频率的年际变化趋势一致.相关性分析和主成分分析都表明相对湿度、风速和混合层厚度是影响天津地区,尤其是冬季PM2.5浓度的主要气象影响因素.不同季节下随着相对湿度增高,地面风速减小,混合层厚度降低,均有PM2.5污染加重的趋势,其中冬季差异最大,与该季节气象因素剧烈多变、静稳天气和寒潮交替发生有关.后向轨迹的聚类分析结果表明,途经天津偏南区域的短距离近地气流下PM2.5质量浓度较高,与该气流下易形成静稳天气有关,春季西北方向的长距离轨迹对应较高浓度的PM2.5则与沙尘天气有关. 相似文献
17.
成都市一次典型空气重污染过程特征及成因分析 总被引:4,自引:0,他引:4
为了研究成都市冬季空气重污染过程的成因,以2015年12月26日—2016年1月6日成都市一次典型重污染天气过程为例,基于HYSPLIT后向轨迹模式结合全球资料同化系统(Global Data Assimilation System,GDAS)气象数据和成都市7个监测站的AQI、PM_(2.5)、PM10、NO2质量浓度数据,使用气象分析、轨迹聚类(Cluster Analysis)、潜在源贡献因子法(Potential Source Contribution Function,PSCF)和浓度权重轨迹法(Concentration Weighted Trajectory,CWT),分析了此次过程的气象特征、轨迹输送特征和污染物潜在来源分布.结果表明,此次污染天气过程是以PM_(2.5)为主要污染物,其次为PM10、NO2.2015年12月30日14:00左右是此次污染天气过程各站点PM_(2.5)、PM10浓度到达峰值的时刻.缺少北方冷空气南下,四川盆地内空气水平运动弱,以及扩散条件差的静稳天气形势是导致此次大气污染过程成都市污染物累积的原因,而冷空气活动是改善这种天气形势的关键.污染过程辐射逆温层的形成对当时污染物浓度增长有促进作用,但随着每日生消、加强减弱,其并不是最终导致重污染天气形成的关键因素.川东北的广元、绵阳、德阳等地区和成都本地及其南向的眉山、雅安等地区是此次过程主要的潜在源区,这些地区人口较密集,工业较发达,且沿地形走向而分布. 相似文献
18.
提出了用GC-MS分析大气细粒子中极性有机化合物的测定方法,给出了2类衍生化反应的最佳条件.标准物质工作曲线相关系数在0.995~1.000之间,仪器精密度为1%~10%,标准物质的标准偏差为3%~20%,实际样品的标准偏差为3%~17%,仪器定量限为0.1~4.0 ng·μL-1.实测了北京市夏、秋、冬3季大气细粒子样品,定量极性有机化合物42种,其中一元羧酸30种、二元羧酸5种、无水单糖3种、甾醇类3种和苯甲酸,并对这些化合物的可能来源进行了探讨. 相似文献
19.
根据郑州市2014~2017年大气主要污染物和气象数据的在线监测数据,分析了各污染物的浓度水平、季节变化、比值特征及气象条件影响.结果表明,2014~2017年郑州市大气中PM2.5和PM10的年均质量浓度分别为(88.1±49.8)、(95.8±60.2)、(78.6±70.3)、(72.0±53.5)μg·m-3和(158.5±65.3)、(167.7±82.6)、(144.5±91.5)、(132.7±70.3)μg·m-3,均超过我国年度二级标准限值的两倍左右.4年来,郑州市空气质量虽有所改善,但颗粒污染问题仍旧没有从根本上解决,且夏季O3-8h超标问题日益突出.利用特征比值法进行来源判断,结果表明燃烧源和二次生成是郑州市大气中PM2.5的主要贡献源,其中燃煤的贡献逐年下降,移动源的贡献逐年上升.此外,低风速、高湿度和降水少是造成大气污染严重的重要气象因素.利用潜在源贡献因子法(PSCF)和浓度权重轨迹法(CWT)分析了郑州市PM2.5潜在来源分布及其贡献特征,结果表明,PM2.5污染源区主要分布在河南省内的周边城市以及山西南部、陕西东部、湖北北部、山东西北部、河北南部等相邻省份,其中,近距离传输对郑州市PM2.5的质量浓度贡献更为显著. 相似文献
20.
为研究2017年12月—2018年2月冬季不同来源区域对豫南地区ρ(PM2.5)的贡献影响及污染特征,利用HYSPLIT-4后向轨迹模式模拟了豫南地区冬季24 h的气团后向轨迹,结合ρ(PM2.5)在线监测数据进行了聚类分析,研究了以豫南地区为受点的各月份PM2.5不同轨迹的输送特征,并使用潜在源贡献(PSCF)分析法和浓度权重轨迹(CWT)分析法识别了豫南地区冬季PM2.5的潜在贡献源区及贡献大小.结果表明:①信阳市空气质量最好,其次为驻马店市,南阳市空气质量最差;南阳市、信阳市和驻马店市ρ(PM2.5)分别超过GB 3095—2012《环境空气质量标准》二级标准限值(75 μg/m3)的1.5、1.2和1.2倍,ρ(PM2.5)日变化均呈双峰特征.②后向轨迹聚类分析表明,豫南地区主要受到来自西北和东北方向长距离传输和正南方向较短距离输送的影响.③潜在源区分析表明,除豫南地区及周边市县本地污染贡献外,冀鲁豫交界区域、陕鄂交界区域、陕西省中西部、湖北省东北部和西部、河南省中北部、山东省南部是影响豫南地区ρ(PM2.5)的主要潜在源区.研究显示,豫南地区PM2.5污染过程除了与地形条件、本地污染源排放有关外,来自东北、西北传输通道城市的远距离输送和南部的近距离传输也不容忽视. 相似文献