首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 89 毫秒
1.
川南自贡市大气颗粒物污染比较严重, 2015~2018年PM_(10)和PM_(2.5)平均浓度分别为(95.42±9.53)μg·m~(-3)和(65.95±6.98)μg·m~(-3),并有明显的下降趋势,冬季PM_(10)和PM_(2.5)浓度远高于其它季节, 1月平均浓度最高,分别为(138.08±52.29)μg·m~(-3)和(108.50±18.05)μg·m~(-3),夏季平均浓度最低.PM_(2.5)与PM_(10)的平均比值为69.12%,冬季比值约为夏季的1.17倍,空气污染以PM_(2.5)为主.采用拉格朗日混合单粒子轨迹模型(HYSPLIT)和全球资料同化系统的GDAS气象数据,对自贡市细颗粒物(PM_(2.5))浓度和逐日72 h后向轨迹进行计算和聚类研究,利用潜在源贡献分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨不同季节影响自贡市PM_(2.5)浓度的潜在源区以及不同源区的污染贡献.结果表明,自贡市近地面四季多受东南风、偏西风和西北风控制,高浓度PM_(2.5)多出现在0~2 m·s~(-1)的低风速区;不同季节、不同输送路径对自贡PM_(2.5)污染影响的差异显著,春季主要受到来自偏西和偏北方向短距离输送气流的影响,夏季污染轨迹主要来自短距离输送的东南气流,秋季主要受来自资阳,经遂宁、重庆和内江的短距离输送气流的影响,冬季除受到资阳、遂宁和内江等周边城市的影响外,还受到来自西藏中部的远距离输送气流影响;除夏季外,自贡市潜在源区主要位于重庆西部与川南交界区域,冬季的主要贡献区范围最广、贡献程度最大,夏季潜在源区范围最小且贡献程度最弱.  相似文献   

2.
邯郸市大气颗粒物污染特征的监测研究   总被引:5,自引:1,他引:5  
使用振荡天平颗粒物在线监测仪连续监测了邯郸市PM10和PM2.5浓度,分析了2012年7月31日—12月2日4个月内PM10、PM2.5的浓度水平、时变规律和PM2.5/PM10的变化情况.结果表明,监测时段内PM10和PM2.5的日均浓度平均值分别为208.4 μg·m-3和99.1 μg·m-3,是国家二级标准的1.4倍和1.3倍;浓度超标的天数占总观测天数的61.6%和60.0%,其污染程度与北京、天津相当,属污染较严重的地区.PM2.5/PM10在19.3%~89.8%之间周期性波动,平均值为49.4%,接近北方城市的平均水平.PM10和PM2.5的浓度变化具有很好的正相关性;日均值在4个月中呈现明显的周期性变化和月际波动,10、11月的PM10和PM2.5浓度变化剧烈且大大高于8、9月份.PM10和PM2.5浓度一天中小时均值的变化呈同步的双峰型分布,最高值出现在9:00和20:00左右,最低值出现在15:00~17:00之间.本研究系统分析了夏秋季节邯郸市大气颗粒物污染状况,以期为当地颗粒物污染的控制提供科学依据.  相似文献   

3.
银川地区大气颗粒物输送路径及潜在源区分析   总被引:4,自引:0,他引:4  
利用Traj Stat软件和全球资料同化系统数据,计算了2014—2016年银川市逐日72 h气流后向轨迹,并采用聚类分析方法,结合银川市同期PM~(10)和PM~(2.5)质量浓度数据,分析了银川年及四季气流轨迹特征及其对银川颗粒物浓度的影响.同时,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨了影响银川颗粒物质量浓度的潜在源区及不同源区对银川颗粒物质量浓度的贡献.结果表明,输送距离最长、高度最高、移速最快的西北气流轨迹占总轨迹的比例最高,达66.7%,且气团移动速度和高度与轨迹距离呈正比;输送高度较低、距离最短、移速最慢的北方气流轨迹占总轨迹数的24.3%;东南气团占总轨迹数的9%,输送距离和移速介于前两者之间,但输送高度较西北气流和北方气流低.四季各类气流轨迹变化特征与年变化特征基本一致,春、秋、冬三季,中、短距离西北气流占气流轨迹总数的比例最高,夏季东南气流占比最高,且夏季南方气流和北方气流占比较春、秋两季高,冬季未出现南方气流和北方气流,春季和冬季气流轨迹输送距离普遍比夏季和秋季长;春、夏、秋三季,偏南气流的输送高度均最低,四季长距离西北气流的输送高度均最高.年及四季都表现为西北气流轨迹对应的银川PM_(10)和PM_(2.5)平均浓度均较高,是影响银川颗粒物质量浓度的最重要输送路径,其次是东南气流轨迹,北方气流轨迹对银川颗粒物浓度影响较小.PSCF和CWT分析发现,位于新疆、甘肃、蒙古国、内蒙古、青海的西北源区及四川、陕西的东南源区是影响银川PM_(10)和PM_(2.5)浓度的两个主要潜在源区,各季节区域范围有所差异.  相似文献   

4.
长三角地区2015年大气重污染特征及其影响因素   总被引:4,自引:0,他引:4  
基于2015年长三角地区129个环境空气质量监测站的空气质量指数(AQI)及主要大气污染物浓度数据,结合气象资料和HYSPLIT后向轨迹模式,探究长三角地区大气重污染的时间变化和空间集聚特征,并深入分析气象条件和区域传输对重污染过程发生和维持的影响.结果表明,2015年长三角地区各城市平均出现AQI超过200的重污染天气共8 d,重污染频率为2.01%,PM2.5作为首要污染物出现频次最多.从时间变化看,重污染主要分布在1月和12月;从空间分布看,北部地区重污染相比南部地区更为严重,徐州和常州市出现频率最高.选取典型重污染过程1月9—11日(纬向扩散型)、1月24—26日(经向扩散型)和12月20—26日(两种模式相结合的重污染天气)进行成因分析,发现长三角地区重污染天气主要受到西北风向、低风速、高湿度和逆温层的影响,导致大气污染物积累且不易扩散.基于HYSPLIT的大气传输轨迹及频率分布表明,来自西北方向的气流对江苏北部地区的污染输送特征有着显著影响.  相似文献   

5.
成都平原大气颗粒物中无机水溶性离子污染特征   总被引:7,自引:6,他引:7  
蒋燕  贺光艳  罗彬  陈建文  王斌  杜云松  杜明 《环境科学》2016,37(8):2863-2870
为探讨成都平原大气颗粒物中水溶性离子的污染特征,识别水溶性离子的组成、分布和时空变化,有针对性地控制重污染和灰霾天气,于2013年8月~2014年7月,在成都平原的5个监测点位共采集1 476个颗粒物样品,应用离子色谱法对PM10和PM_(2.5)中8种无机水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+)、Cl~-)进行测量.结果表明在观测期间,PM_(2.5~10)和PM_(2.5)中无机水溶性离子总量分别为11.35μg·m-3和36.93μg·m-3,分别占ρ(PM_(2.5)~10)和ρ(PM_(2.5))的37.8%和46.6%;其中二次离子(SO_4~(2-)、NO_3~-和NH~+4,SNA)约占各自水溶性离子总量的81.1%和89.9%.水溶性离子质量浓度冬季最高,春秋季相当,夏季最低.ρ(SO2-4)/ρ(PM_(2.5))夏秋季较高,而ρ(NO_3~-)/ρ(PM_(2.5))冬季最高,夏季最低.SNA、Cl~-、K~+大多分布在PM_(2.5)中,Ca~(2+)和Mg~(2+)主要分布在PM_(2.5~10)中.PM_(2.5)基本呈中性,水溶性离子主要以(NH_4)_2SO_4、NH_4NO_3、KNO_3、NaCl、KCl等形式存在.ρ(NO_3~-)/ρ(SO_4~(2-))揭示固定源依然是PM_(2.5)的主要来源.硫氧化速率(SOR)和氮氧化速率(NOR)年均值分别为0.31和0.13,SOR夏季最高,NOR冬季最高,二者变化趋势相反.成都平原PM_(2.5)呈区域性复合污染特征,SNA是造成ρ(PM_(2.5))增加的主导因素.  相似文献   

6.
利用2018年3月—2021年2月环境和气象数据对皖南地区铜陵市大气颗粒物的污染特征和潜在贡献源进行了系统性研究.铜陵市大气颗粒物污染具有明显的季节变化特征,冬季污染物浓度最高,PM2.5和PM10平均为(60.3±31.0)μg·m-3和(89.2±42.2)μg·m-3.计算发现PM2.5/PM10超过0.5,铜陵市的大气颗粒物污染问题与细颗粒物关系密切.后向轨迹聚类分析表明铜陵市大气颗粒物的输送路径具有季节性差异.春季以西北、东北和西南方向气流为主,占比83.73%;夏季以东南和南部方向气流为主,占比82.90%;秋季以东北气流为主,占比51.00%;冬季则是以北方和西北气流为主,占比69.81%.其中,冬季气流轨迹所对应的PM2.5和PM10的浓度最高,平均为59.7和92.0μg·m-3;夏季最低,平均为23.8和43.8μg·m-3.潜在源贡献因子(WPSC...  相似文献   

7.
为分析北京市APEC期间强化减排措施对大气细颗粒物中类腐殖酸(humic-like substances,HULIS)浓度及污染特征的影响.对APEC前后样品进行了碳质组分(OC/EC)、水溶性有机碳(water-soluble organic carbon,WSOC)、HULIS和水溶性离子分析,研究发现APEC采样期间大气颗粒物中HULIS的浓度范围为1~15μg·m~(-3).HULIS浓度在会议减排前、中和后期分别为7.99、5.83和7.06μg·m~(-3).会议减排对降低HULIS浓度起到了一定作用.在会议期间HULIS的浓度下降程度明显快于EC与WSOC.会议之后HULIS的浓度上升程度明显慢于OC、EC、WSOC和PM_(2.5);HULIS占PM_(2.5)的值在采样期间变化不大,在采样期间、会议减排前、中和后期分别为13.60%、13.59%、14.02%和12.22%.HULIS-C/OC的值和HULIS-C/WSOC的值依次为28.95%、35.51%、28.37%、19.93%和52.75%、59.58%、51.54%、45.39%.HULIS与湿度呈显著正相关,与风速呈显著负相关;生物质燃烧和二次转化可能是北京大气颗粒物中HULIS重要来源.  相似文献   

8.
利用TrajStat软件和全球资料同化系统数据,计算了2005~2016年北京市逐日72h气流后向轨迹,采用聚类分析方法,结合北京同期PM2.5逐日质量浓度数据,分析北京市年及四季后向气流轨迹特征及其对北京市颗粒物浓度的影响,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨研究时期内不同季节影响北京市颗粒物质量浓度的潜在源区以及不同源区对北京颗粒物质量浓度的贡献.结果表明,就全年而言,西北输送气流占总轨迹的比例最高,达59.97%,且其输送距离最远、输送高度最高、移速最快.输送高度最低、距离最短、移速最慢的东南气流占比次之,为27.64%,东北气流占比最低为12.40%,其移速和输送距离介于前两者之间.主要污染轨迹来自山东、河北,其次为来自俄罗斯、蒙古国和内蒙古荒漠戈壁地区的西北气流.PSCF和CWT分析发现,蒙中、晋中、冀西南、豫北及鲁西是影响北京PM2.5的主要潜在区域.而不同季节、不同输送路径对北京PM2.5污染影响的差异显著,春季主要受来自蒙晋交界区域的短距离输送气流影响,潜在源区位于冀南、鲁西、豫东和皖西北地区,夏季污染轨迹来自鲁、晋地区,潜在源区为豫东北、皖北和苏北地区;秋季主要受来自冀南地区的短距离气流影响,潜在源区为晋北、冀南、豫北和鲁西地区,冬季主要受来自蒙古国中西部和蒙中地区的远距离输送气流影响,潜在源区主要在冀南、鲁西、豫北、晋和蒙西地区.  相似文献   

9.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响.通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM_(2.5)的潜在污染来源和不同潜在源区对郑州市大气PM_(2.5)浓度的贡献.结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM_(2.5)浓度;郑州市冬季PM_(2.5)的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM_(2.5)污染水平也有着较大的影响和贡献.  相似文献   

10.
苏锡常地区PM2.5污染特征及其潜在源区分析   总被引:2,自引:1,他引:2  
利用2014年12月—2015年11月苏锡常地区国控大气环境质量监测站发布的逐时数据,分析了研究区PM_(2.5)浓度的季节变化和空间分布特征,并利用HYSPLIT模型分析了大气污染物的输送路径及苏锡常地区PM_(2.5)的潜在源区.结果表明,苏锡常地区PM_(2.5)浓度日均值变化趋势基本一致,均呈现冬季高、夏季低的规律.PM_(2.5)浓度四季空间差异显著,不同监测站之间的差异较小.四季PM_(2.5)浓度与其它污染物之间相关性显著.单位面积污染物排放量与空气质量分布的空间错位,表明该地区PM_(2.5)污染与区域性污染物迁移有较大关系.苏锡常地区气流后向轨迹季节变化特征明显,冬、春、秋季的气流主要来自西北内陆地区,夏季气流以东南和西南方向输入居多.聚类分析表明,来自内陆的污染气流和来自海洋的清洁气流是苏锡常地区两种主要输送类型,外源污染气流不仅直接输送颗粒物,还贡献了大量的气态污染物.山东南部、江苏西部、安徽东部、浙江北部及江西西北地区对苏锡常冬季PM_(2.5)浓度贡献较大,春、夏、秋季的潜在源区主要分布在苏锡常本地和周边城市.  相似文献   

11.
为分析APEC会议前后北京地区PM2.5变化特征,利用中国科学院大学雁栖湖校区超级站在2014年10—12月的连续观测数据,对APEC会议前后北京地区污染物分布及变化特征、气象影响因素和气团传输路径特征进行了分析. 结果表明:APEC会议期间北京地区减排效果显著,ρ(PM2.5)平均值比会前下降了60.5%. 气象条件对污染物扩散起到积极作用,APEC期间平均风速为1.40 m/s,平均相对湿度为31.9 %,近地面气象条件优于APEC会前、会后. 北京地区受到外来污染物输送的影响,在2.00~3.00 m/s的南风下易发生来自南部地区的PM2.5和SO2输送. APEC会议期间北京地区主要受来自西北地区的高速、高海拔气团控制,其出现频率为39.6%,远低于APEC会前 (15.9%)和会后(20.8%),而来自南部地区的低速、低海拔污染气团的出现频率仅为2.1%,扩散条件总体良好. 研究显示,除了减排措施有效削减了污染物排放以外,有利的气象条件也是APEC会议期间北京地区保持良好空气质量的重要因素.   相似文献   

12.
对东南沿海平原地区某燃煤电厂不同方位距离的9个采样点进行为期9个月的大气颗粒物采集,以PM2.5、PM10为对象,研究了颗粒物与颗粒物汞的时空分布,探讨了燃煤电厂排放对周边大气颗粒物与颗粒物汞分布的影响.结果表明:①本研究区PM2.5平均浓度为78.10 μg·m-3,其中颗粒物汞平均浓度为294.88 pg·m-3;PM10平均浓度为114.48 μg·m-3,其中颗粒物汞平均浓度为363.41 pg·m-3,均高于海内外众多城市.②冬季颗粒物、碳组分及颗粒物汞的浓度远高于春、夏、秋三季,冬季燃煤量大、逆温等气象因素及远距离污染物传输均造成当地冬季颗粒物累积.③大气颗粒物汞浓度随距电厂距离的增加先增加后降低,最大浓度范围为电厂W-NW方向1.3~2.5 km处.④各采样点均受到多种污染源共同影响,以燃煤尘为主,餐饮油烟、机动车尾气、生物质燃烧和扬尘次之,燃煤电厂对周边区域环境大气可吸入颗粒物主要影响区域为W-NW方向1.3~2.5 km.  相似文献   

13.
利用HYSPLIT模式计算了2016—2018年西宁市逐日72 h气团后向轨迹,采用聚类分析方法,结合同期颗粒物PM10和PM2.5质量浓度数据,分析逐年和3年平均西宁市颗粒物输送特征及差异,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)对影响西宁市PM10和PM2.5质量浓度的污染潜在源区及不同潜在源区贡献进行了分析.结果表明,2016—2018年,西宁市颗粒物最主要输送路径源自青海北部的聚类2、甘肃中部的聚类6和甘肃东部的聚类8,占同期总轨迹比例分别为28.1%、27.4%和27.5%;3年平均则源自青海北经青海东折回西宁的聚类2,占比45.3%.最主要输送路径对应颗粒物质量浓度最低,输送距离较短、垂直高度较低、气团移速较慢;影响气团由西北向偏东转变,3年平均则以西北气团为主.2018年源自甘肃经青海东至西宁的短距离输送处于突出地位,所含轨迹占总轨迹的比例高达49.6%.PM10和PM2.5主要输送路径和污染路径由较长距离向较短距离过渡,较长距离输送路径出现比例逐年较小.PM2.5/PM10小于0.3时,主要输送路径与PM10污染轨迹有很好的对应关系;PM2.5/PM10大于0.6时,主要输送路径与PM2.5污染轨迹有较好的对应关系.PSCF和CWT分析发现,影响西宁市颗粒物质量浓度的主要污染潜在源区分布在新疆南部和青海北部,对PM10质量浓度贡献大于100 μg·m-3,对PM2.5质量浓度贡献大于45 μg·m-3.潜在源区分布年变化差异明显,2016年最广,2018年最小.印度北部主要贡献源区虽分布范围逐年减小,但在2017年局部贡献增大,对PM10贡献超250 μg·m-3,对PM2.5贡献超60 μg·m-3.主要贡献区周边区域及西宁至兰州一带为中等贡献源区,对PM10贡献为50~100 μg·m-3,对PM2.5贡献为15~45 μg·m-3.  相似文献   

14.
Trajectory clustering, potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) methods were applied to investigate the transport pathways and identify potential sources of PM2.5 and PM10 in different seasons from June 2014 to May 2015 in Beijing. The cluster analyses showed that Beijing was affected by trajectories from the south and southeast in summer and autumn. In winter and spring, Beijing was not only affected by the trajectories from the south and southeast, but was also affected by trajectories from the north and northwest. In addition, the analyses of the pressure profile of backward trajectories showed that backward trajectories, which have important influence on Beijing, were mainly distributed above 970 hPa in summer and autumn and below 950 hPa in spring and winter. This indicates that PM2.5 and PM10 were strongly affected by the near surface air masses in summer and autumn and by high altitude air masses in winter and spring. Results of PSCF and CWT analyses showed that the largest potential source areas were identified in spring, followed by winter and autumn, then summer. In addition, potential source regions of PM10 were similar to those of PM2.5. There were a clear seasonal and spatial variation of the potential source areas of Beijing and the airflow in the horizontal and vertical directions. Therefore, more effective regional emission reduction measures in Beijing''s surrounding provinces should be implemented to reduce emissions of regional sources in different seasons.  相似文献   

15.
基于南京市空气质量数据和NCEP全球再分析资料,利用后向轨迹模式计算了2019年3月至2020年2月以南京城区为受体点的逐小时气团24 h后向轨迹,并将后向轨迹数据和PM2.5浓度数据结合,进行轨迹聚类和潜在源区分析.结果表明,研究期间南京市ρ(PM2.5)平均值为(36±20)μg·m-3,超过国家二级标准限值的污染天数为17 d,ρ(PM2.5)的季节变化特征明显:冬季(49μg·m-3)>春季(42μg·m-3)>秋季(31μg·m-3)>夏季(24μg·m-3),全年PM2.5浓度和地面气压显著正相关,而跟气温、相对湿度、降水量和风速均为显著负相关关系;春季气团输送路径为7条,其余季节均为6条,其中,春季的西北路和东南偏南路,秋季东南路和冬季西南路是各季主要的污染输送路径,均具有传输距离短,气团移动慢的特点,说明静稳天气下本地累积是PM2.5出...  相似文献   

16.
郑州市2014~2017年大气污染特征及气象条件影响分析   总被引:1,自引:3,他引:1  
根据郑州市2014~2017年大气主要污染物和气象数据的在线监测数据,分析了各污染物的浓度水平、季节变化、比值特征及气象条件影响.结果表明,2014~2017年郑州市大气中PM2.5和PM10的年均质量浓度分别为(88.1±49.8)、(95.8±60.2)、(78.6±70.3)、(72.0±53.5)μg·m-3和(158.5±65.3)、(167.7±82.6)、(144.5±91.5)、(132.7±70.3)μg·m-3,均超过我国年度二级标准限值的两倍左右.4年来,郑州市空气质量虽有所改善,但颗粒污染问题仍旧没有从根本上解决,且夏季O3-8h超标问题日益突出.利用特征比值法进行来源判断,结果表明燃烧源和二次生成是郑州市大气中PM2.5的主要贡献源,其中燃煤的贡献逐年下降,移动源的贡献逐年上升.此外,低风速、高湿度和降水少是造成大气污染严重的重要气象因素.利用潜在源贡献因子法(PSCF)和浓度权重轨迹法(CWT)分析了郑州市PM2.5潜在来源分布及其贡献特征,结果表明,PM2.5污染源区主要分布在河南省内的周边城市以及山西南部、陕西东部、湖北北部、山东西北部、河北南部等相邻省份,其中,近距离传输对郑州市PM2.5的质量浓度贡献更为显著.  相似文献   

17.
对2017年南京市区7个自动空气质量监测点的PM_(2.5)质量浓度ρ(PM_(2.5))数据进行分析,采用克里金(Kringing)空间插值法、气流运动轨迹聚类、潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT)探讨了四季大气中ρ(PM_(2.5))的时空分布特征和潜在来源。结果显示,四季大气中ρ(PM_(2.5))均值由高到低依次为冬季(65. 54μg/m~3)、春季(41. 70μg/m~3)、秋季(35. 18μg/m~3)和夏季(23. 56μg/m~3),秦淮区四季大气中ρ(PM_(2.5))均最高。春季南京大气中ρ(PM_(2.5))易受黄海海岸和北方大陆性输送气流的影响,来自黄海方向的气流轨迹2贡献比例达51. 65%,对应的ρ(PM_(2.5))为50. 91μg/m~3;夏季南京大气中ρ(PM_(2.5))主要受江苏、东部海洋和南部沿海城市输送气流的影响,其中源自江苏的气流轨迹1对南京大气PM_(2.5)贡献比例最大(33. 64%),气流轨迹对应的ρ(PM_(2.5))为35μg/m~3;秋季南京大气中ρ(PM_(2.5))易受短距离的偏北气流影响,来自山西南部,河南中部、安徽中部的气流轨迹5对应的ρ(PM_(2.5))最高,出现概率(21. 11%)和贡献比例(27. 81%)均较高;冬季南京大气中ρ(PM_(2.5))主要受北方大陆性输送气流影响,来自俄罗斯、蒙古国东部、河北北部、北京、天津、山东中部的长距离气流轨迹4对应的ρ(PM_(2.5))最高,达109. 8μg/m~3,其贡献比例为26. 86%。PSCF和CWT分析发现,安徽、山东、浙江与江苏交界和黄海海岸是影响南京市空气质量的主要潜在源区,此外,湖北、北京、天津以及渤海海岸也是南京大气PM_(2.5)的潜在源区。  相似文献   

18.
2014年APEC会议期间北京市空气质量分析   总被引:4,自引:2,他引:4  
为研究区域性大气污染物减排措施对北京市空气质量的影响,结合地面观测的气象数据、能见度、常规污染物浓度和PM2.5化学组分,对APEC会议期间北京市的空气质量进行分析.结果表明,APEC期间的11月4日和8-10日两个过程,大气污染物扩散条件较不利,易出现污染过程.APEC期间,密云、榆垡、昌平、奥体中心和西直门北大街5个站点SO2、NO2、O3、PM10和PM2.5平均浓度分别为(8.0±8.0)、(37.4±21.6)、(36.0±22.5)、(67.7±43.4)和(48.6±42.2) μg·m-3.与近5年同期(PM2.5为去年同期)相比,SO2、NO2、PM10和PM2.5日均浓度分别下降了61.5%、40.8%、36.4%和47.1%,O3日均浓度上升了101.8%.从污染物日变化规律来看,减排措施的环境效果在大气污染物扩散条件较有利的时段体现的更明显.在APEC期间,PM2.5浓度在前半夜保持平稳,未出现积累峰值.与秋季非APEC期间相比,PM2.5中大部分组分浓度均有明显下降,二次离子组分降幅尤为明显.同时,本文测算了APEC期间减排措施的"净环境效益",发现减排措施使得SO2、NO2、PM10和PM2.5浓度分别降低了74.1%、48.0%、66.6%和64.7%,O3浓度上升了189.2%.与10月份的大气污染过程相比,同样在不利气象条件下,实施减排措施后PM2.5浓度峰值明显降低,积累速度明显减缓.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号