首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To use stabilized nanoparticles(NPs) in water as disinfectants over a very long period, the amount of coating agent(for NP stabilization) needs to be optimized. To this end, silver nanoparticles(Ag-NPs) with two different coating densities of tri-sodium citrate(12.05 and46.17 molecules/nm~2, respectively), yet of very similar particle size(29 and 27 nm, respectively)were synthesized. Both sets of citrate capped NPs were then separately impregnated on plasma treated activated carbon(AC), with similar Ag loading of 0.8 and 0.82 wt.%, respectively. On passing contaminated water(containing 10~4 CFU Escherichia coli/m L of water) through a continuous flow-column packed with Ag/AC, zero cell concentration was achieved in 22 and 39 min, with Ag-NPs(impregnated on AC, named as Ag/AC) having lower and higher coating density, respectively. Therefore, even on ensuring similar Ag-NP size and loading, there is a significant difference in antibacterial performance based on citrate coating density in Ag/AC.This is observed in lower coating density case, due to both:(i) higher Ag~+ ion release from Ag-NP and(ii) stronger binding of individual Ag-NPs on AC. The latter ensures that, Ag-NP does not detach from the AC surface for a long duration. TGA-DSC shows that Ag-NPs with a low coating density bind to AC with 4.55 times higher adsorption energy, compared to Ag/AC with a high coating density, implying stronger binding. Therefore, coating density is an important parameter for achieving higher antibacterial efficacy, translating into a faster decontamination rate in experiments, over a long period of flow-column operation.  相似文献   

2.
载银活性碳纤维对大肠杆菌吸附作用的研究   总被引:10,自引:0,他引:10  
以大肠杆菌(Escherichiacoli)为对象,通过细菌吸附实验研究了载银活性碳纤维(ACF(Ag))对大肠杆菌的吸附特性.借助扫描电子显微镜(SEM)进行细菌分布形态的观察和细菌数量的计算.结果表明,大肠杆菌易分布于ACF(Ag)表面的沟槽处;ACF(Ag)吸附的细菌数量随银含量、比表面积的增加而增大.此外,细菌吸附量还与ACF(Ag)表面银颗粒的大小有关.对吸附细菌的动力学亦进行了研究.  相似文献   

3.
Due to the wide use of silver nanoparticles (AgNPs) in various fields, it is crucial to explore the potential negative impacts on the aquatic environment of AgNPs entering into the environment in different ways. In this study, comparative experiments were conducted to investigate the toxicological impacts of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) with two kinds of dosing regimens, continuous and one-time pulsed dosing, in different exposure media (deionized water and XiangJiang River water). There were a number of quite different experimental results (including 100% mortality of zebrafish, decline in the activity of enzymes, and lowest number and length of adventitious roots) in the one-time pulsed dosing regimen at high PVP-AgNP concentration exposure (HOE) compared to the three other treatments. Meanwhile, we determined that the concentration of leached silver ions from PVP-AgNPs was too low to play a role in zebrafish death. Those results showed that HOE led to a range of dramatic ecosystem impacts which were more destructive than those of other treatments. Moreover, compared with the continuous dosing regimen, despite the fact that higher toxicity was observed for HOE, there was little difference in the removal of total silver from the aquatic environment for the different dosing regimens. No obvious differences in ecological impacts were observed between different water columns under low concentration exposure. Overall, this work highlighted the fact that the toxicity of AgNPs was impacted by different dosing regimens in different exposure media, which may be helpful for assessments of ecological impacts on aquatic environments.  相似文献   

4.
In the present work we compared the biological activity of DCF, 4′-OHDCF and 5-OHDCF as molecules of most biodegradation pathways of DCF and selected transformation products (2-hydroxyphenylacetic acid; 2,5-dihydroxyphenylacetic acid and 2,6-dichloroaniline) which are produced during AOPs, such as ozonation and UV/H2O2. We also examined the interaction of DCF with chlorogenic acid (CGA). CGA is commonly used in human diet and entering the environment along with waste mainly from the processing and brewing of coffee and it can be toxic for microorganisms included in activated sludge. In the present experiment the evaluation of following parameters was performed: E. coli K-12 cells viability, growth inhibition of E. coli K-12 culture, LC50 and mortality of Chironomus aprilinus, genotoxicity, sodA promoter induction and ROS generation. In addition the reactivity of E. coli SM recA:luxCDABE biosensor strain in wastewater matrices was measured. The results showed the influence of DCF, 4′-OHDCF and 5-OHDCF on E. coli K-12 cells viability and bacteria growth, comparable to AOPs by-products. The highest toxicity was observed for selected, tested AOPs by-products, in comparison to the DCF, 4′-OHDCF and 5-OHDCF. Genotoxicity assay indicated that 2,6-dichloroaniline (AOPs by-product) had the highest toxic effect. The oxidative stress assays revealed that the highest level of ROS generation and sodA promoter induction were obtained for DCF, 4′-OHDCF and 5-OHDCF, compared to other tested compounds. We have also found that there is an interaction between chlorogenic acid and DCF, which resulted in increased toxicity of the mixture of the both compounds to E. coli K-12, comparable to parent chemicals. The strongest response of E. coli SM biosensor strain with recA:luxCDABE genetic construct in filtered treated wastewaters, comparable to control sample was noticed. It indicates, that E. coli SM recA:luxCDABE biosensor strains is a good tool for bacteria monitoring in wastewater environment. Due to toxicity and biological activity of tested DCF transformation products, there is a need to use additional wastewater treatment systems for wastewater contaminated with pharmaceutical residues.  相似文献   

5.
The current research study focuses to formulate the biosynthesized silver nanoparticles for the first time from silver acetate using methanolic root extracts of Diospyros sylvatica, a member of family Ebenaceae. TEM analysis revealed the average diameter of Ag NPs around 8 nm which is in good agreement with the average crystallite size (10 nm) calculated from X-ray Diffraction (XRD) analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+) ve, Gram (−) ve bacterial and fungal strains. The bioinspired Ag-NP showed promising activity against all the tested bacterial strains and the activity was enhanced with increased dosage levels.  相似文献   

6.
抗生素和纳米银对大肠杆菌耐药性的联合效应   总被引:1,自引:0,他引:1  
以大肠杆菌(E.coli)为模式生物,研究了磺胺类抗生素(SAs)和纳米银(AgNPs)在单一或联合作用下对RP4质粒接合转移效应及E.coli突变效应的影响,并对联合作用方式进行了判别,基于分子对接技术和线性回归分析,探讨了两种效应的机制及其与毒性效应的关系.结果表明,在较低浓度范围内,所测12种SAs以及AgNPs在单一或联合暴露下对接合转移和突变均有促进作用,12组SAs-AgNPs混合物对接合转移频率促进率峰值的最大值和最小值分别为105.32%和46.96%,对突变体促进率峰值的最大值和最小值分别为1410.25%和238.38%.此外,SAs和AgNPs联合暴露对RP4质粒接合转移效应主要表现为协同作用,对E.coli突变效应主要表现为拮抗作用,且接合转移效应、突变效应与毒性效应之间具有良好的相关性.  相似文献   

7.
以大肠杆菌(E.coli)为模式生物,研究了磺胺类抗生素(SAs)和纳米银(AgNPs)在单一或联合作用下对RP4质粒接合转移效应及E.coli突变效应的影响,并对联合作用方式进行了判别,基于分子对接技术和线性回归分析,探讨了两种效应的机制及其与毒性效应的关系.结果表明,在较低浓度范围内,所测12种SAs以及AgNPs在单一或联合暴露下对接合转移和突变均有促进作用,12组SAs-AgNPs混合物对接合转移频率促进率峰值的最大值和最小值分别为105.32%和46.96%,对突变体促进率峰值的最大值和最小值分别为1410.25%和238.38%.此外,SAs和AgNPs联合暴露对RP4质粒接合转移效应主要表现为协同作用,对E.coli突变效应主要表现为拮抗作用,且接合转移效应、突变效应与毒性效应之间具有良好的相关性.  相似文献   

8.
Due to the unique antibacterial activities, silver nanoparticles (AgNPs) have been extensively used in commercial products. Anthropogenic activities have released considerable AgNPs as well as highly toxic silver ion (Ag+) into the aquatic environment. Our recent study revealed that ubiquitous natural organic matter (NOM) could reduce Ag+ to AgNP under natural sunlight. However, the toxic effect of this process is not well understood. In this work, we prepared mixture solution of Ag+ and AgNPs with varied Ag+% through the sunlight-driven reduction of Ag+ by NOM and investigated the acute toxicity of the solutions on Daphnia magna. Formation of AgNPs was demonstrated and characterized by comprehensive techniques and the fraction of unconverted Ag+ was determined by ultrafiltration-inductively coupled plasma mass spectrometry determination. The formation of AgNPs enhanced significantly with the increasing of solution pH and cumulative photosynthetically active radiation of sunlight. The toxicity of the resulting solution was further investigated by using freshwater crustacean D. magna as a model and an 8 hr-median lethal concentration (LC50) demonstrated that the reduction of Ag+ by NOM to AgNPs significantly mitigated the acute toxicity of silver. These results highlight the importance of sunlight and NOM in the fate, transformation and toxicity of Ag+ and AgNPs, and further indicate that the acute toxicity of AgNPs should be mainly ascribed to the dissolved Ag+ from AgNPs.  相似文献   

9.
以纳米银(AgNPs)为研究对象,Ag+(AgNO3)为对照,通过添加半胱氨酸(L-cysteine)探讨小麦对AgNPs的吸收累积和毒性响应.小麦幼苗于不同浓度的AgNPs悬浮液中培养4h后,根系出现氧化应激反应和细胞膜损伤,丙二醛(MDA)和过氧化氢酶(CAT)含量分别由对照组的(2.9±0.5)nmol/L/mgprot和(8.6±1.2)U/mgprot增加至(4.9±1.5)nmol/L/mgprot和(12.4±1.2)U/mgprot.半胱氨酸缓解了AgNO3对小麦的毒性并使小麦对AgNO3的吸收速率常数从(275.4±12.3)L/(kg×h)降低到(210.8±11.2)L/(kg×h).然而,半胱氨酸并没有缓解AgNPs对小麦的毒性,且AgNPs的吸收速率常数没有显著性变化[(12.6±0.8)和(11.2±0.6)L/(kg×h)].这说明AgNPs对小麦的有效性和毒性不仅来源于其释放的Ag+,还来源于纳米颗粒本身.通过进一步计算AgNPs暴露液中不同形态Ag的吸收速率常数,发现Ag+吸收速率常数最高[(275.4±12.3)L/(kg×h)],Ag-cysteine络合物吸收速率常数次之[(210.8±11.2)L/(kg×h)],纳米颗粒吸收速率常数最低[1.6L/(kg×h)].实验中建立了吸收速率常数预测方程,该方程预测结果与实验观测结果一致,说明该方程能够较好地描述小麦吸收AgNPs的具体过程.  相似文献   

10.
The objective of this study was to understand toxicity of mixture of nanoparticles (NPs) (ZnO and TiO2) and their ions to Escherichia coli. Results indicated the decrease in percentage growth of E. coli with the increase in concentration of NPs both in single and mixture setups. Even a small concentration of 1 mg/L was observed to be significantly toxic to E. coli in binary mixture setup (exposure concentration: 1 mg/L ZnO and 1 mg/L TiO2; 21.15% decrease in plate count concentration with respect to control). Exposure of E. coli to mixture of NPs at 1000 mg/L (i.e., 1000 mg/L ZnO and 1000 mg/L TiO2) resulted in 99.63% decrease in plate count concentration with respect to control. Toxic effects of ions to E. coli were found to be lesser than their corresponding NPs. The percentage growth reduction was found to be 36% for binary mixture of zinc and titanium ions at the highest concentration (i.e., 803.0 mg/L Zn and 593.3 mg/L Ti where ion concentrations are equal to the Zn ions present in 1000 mg/L ZnO NP solution and Ti+ 4 ions present in 1000 mg/L TiO2 NP solution). Nature of mixture toxicity of the two NPs to E. coli was found to be antagonistic. The alkaline phosphatase (Alp) assay indicated that the maximum damage was observed when E. coli was exposed to 1000 mg/L of mixture of NPs. This study tries to fill the knowledge gap on information of toxicity of mixture of NPs to bacteria which has not been reported earlier.  相似文献   

11.
纳米颗粒和抗生素在污水处理厂中的共同存在可产生综合毒性.选择纳米氧化铜颗粒(CuO NPs)和环丙沙星(CIP)作为纳米颗粒和抗生素的代表性物质,探究了CuO NPs和CIP共存胁迫对好氧颗粒污泥(AGS)系统的运行性能、污泥特性和微生物群落的长期影响.结果表明:CuO NPs单独胁迫使脱氮性能轻微提高,对碳和磷的去除性能轻微下降.CIP单独胁迫显著抑制了碳、氮和磷的去除性能.CuO NPs和CIP共存时对碳、氮和磷去除表现出明显的协同抑制效应.CuO NPs和CIP共存胁迫使细胞膜完整性下降,乳酸脱氢酶(LDH)释放量增多,胞外聚合物(EPS)分泌增强,且溶解性EPS(S-EPS)的官能团发生显著变化.CuO NPs和CIP共存胁迫改变了微生物群落结构,对生物多样性具有显著的协同抑制效应,对微生物具有较强的毒性作用.  相似文献   

12.
The increasing production and use of engineered silver nanoparticles (AgNP) in industry and private households are leading to increased concentrations of AgNP in the environment. An ecological risk assessment of AgNP is needed, but it requires understanding the long term effects of environmentally relevant concentrations of AgNP on the soil microbiome. Hence, the aim of this study was to reveal the long-term effects of AgNP on soil microorganisms. The study was conducted as a laboratory incubation experiment over a period of one year using a loamy soil and AgNP concentrations ranging from 0.01 to 1?mg?AgNP/kg soil. The short term effects of AgNP were, in general, limited. However, after one year of exposure to 0.01?mg?AgNP/kg, there were significant negative effects on soil microbial biomass (quantified by extractable DNA; p?=?0.000) and bacterial ammonia oxidizers (quantified by amoA gene copy numbers; p?=?0.009). Furthermore, the tested AgNP concentrations significantly decreased the soil microbial biomass, the leucine aminopeptidase activity (quantified by substrate turnover; p?=?0.014), and the abundance of nitrogen fixing microorganisms (quantified by nifH gene copy numbers; p?=?0.001). The results of the positive control with AgNO3 revealed predominantly stronger effects due to Ag+ ion release. Thus, the increasing toxicity of AgNP during the test period may reflect the long-term release of Ag+ ions. Nevertheless, even very low concentrations of AgNP caused disadvantages for the microbial soil community, especially for nitrogen cycling, and our results confirmed the risks of releasing AgNP into the environment.  相似文献   

13.
东方伊萨酵母YP-1对染料活性艳红K-2BP的脱色   总被引:5,自引:1,他引:4       下载免费PDF全文
利用含染料的选择性培养基从土壤中分离出一株对活性艳红K-2BP有明显脱色效果的酵母菌株YP-1,经鉴定为东方伊萨酵母Issatchenkia orientalis.结果表明,该酵母菌对£400mg/L的活性艳红K-2BP有较好的脱色效果.对于活性艳红K-2BP起始浓度为100mg/L的培养基,该菌株可在12h达到99%以上的最大脱色率,其最佳接种量为10%(体积分数),最适pH值在3~9之间,氮源(NH4)2SO4的浓度30.02%,碳源葡萄糖的浓度30.2%.脱色机理研究结果表明,该酵母对活性艳红K-2BP的去除是先吸附后生物降解.此外,该菌株对初始浓度为200mg/L的偶氮染料活性黑KN-B的脱色率也可达99.5%.  相似文献   

14.
Released Ag ions or/and Ag particles are believed to contribute to the cytotoxicity of Ag nanomaterials, and thus, the cytotoxicity and mechanism of Ag nanomaterials should be dynamic in water due to unfixed Ag particle:Ag+ ratios. Our recent research found that the cytotoxicity of PVP-Ag nanoparticles is attributable to Ag particles alone in 3 hr bioassays, and shifts to both Ag particles and released Ag+ in 48 hr bioassays. Herein, as a continued study, the cytotoxicity and accumulation of 50 and 100 nm Ag colloids in Escherichia coli were determined dynamically. The cytotoxicity and mechanisms of nano-Ag colloids are dynamic throughout exposure and are derived from both Ag ions and particles. Ag accumulation by E. coli is derived mainly from extracellular Ag particles during the initial 12 hr of exposure, and thereafter mainly from intracellular Ag ions. Fe3+ accelerates the oxidative dissolution of nano-Ag colloids, which results in decreasing amounts of Ag particles and particle-related toxicity. Na+ stabilizes nano-Ag colloids, thereby decreasing the bioavailability of Ag particles and particle-related toxicity. Humic acid (HA) binds Ag+ to form Ag+-HA, decreasing ion-related toxicity and binding to the E. coli surface, decreasing particle-related toxicity. HA in complex conditions showed a stronger relative contribution to toxicity and accumulation than Na+ or Fe3+. The results highlighted the cytotoxicity and mechanism of nano-Ag colloids are dynamic and affected by environmental factors, and therefore exposure duration and water chemistry should be seriously considered in environmental and health risk assessments.  相似文献   

15.
利用硼氢化钠还原硝酸银,并使用聚乙烯醇(PVA)作为分散剂,制备出分散良好、粒径为(14±3)nm的纳米银颗粒,考察了其对聚磷菌(Microlunatus phosphovorus)好氧吸磷和厌氧释磷的影响,以及产生的毒性效应.结果表明,在好氧状态下,7mg/L的纳米银能够完全抑制聚磷菌的生长(P <0.01),达到10mg/L时才能完全抑制聚磷菌的吸磷能力(P=0.01);在厌氧状态下,大于20mg/L的纳米银才使聚磷菌释磷能力受到部分抑制(P <0.05).活性氧簇(ROS)和扫描电子显微镜(SEM)的检测结果表明,纳米银使细菌体内ROS水平降低,部分细菌菌体表面塌陷,这说明,纳米银不但可以毒害聚磷菌菌体表面,还可以降低菌内ROS水平.  相似文献   

16.
Mercury, generally found in natural gas, is extremely hazardous. Although average mercury levels are relatively low, they are further reduced to comply with future mercury regulations, which are stringent in order to avoid releasing to the environment. Herein, vapor mercury adsorption was therefore investigated using two kinds of supports, granular activated carbon (GAC) and titanium dioxide (TiO2). Both supports were impregnated by silver (5 and 15 wt.%), before testing against a commercial adsorbent (sulfur-impregnated activated carbon, SAC). The adsorption isotherm, kinetics, and its thermodynamics of mercury adsorption were reported. The results revealed that Langmuir isotherm provided a better fit to the experimental data. Pseudo second-order was applicable to describe adsorption kinetics. The higher uniform Ag dispersion was a key factor for the higher mercury uptake. TiO2 supported silver adsorbent showed higher mercury adsorption than the commercial one by approximately 2 times. Chemisorption of mercury onto silver active sites was confirmed by an amalgam formation found in the spent adsorbents.  相似文献   

17.
Mercury, generally found in natural gas, is extremely hazardous. Although average mercury levels are relatively low, they are further reduced to comply with future mercury regulations, which are stringent in order to avoid releasing to the environment. Herein, vapor mercury adsorption was therefore investigated using two kinds of supports, granular activated carbon (GAC) and titanium dioxide (TiO2). Both supports were impregnated by silver (5 and 15 wt.%), before testing against a commercial adsorbent (sulfur-impregnated activated carbon, SAC). The adsorption isotherm, kinetics, and its thermodynamics of mercury adsorption were reported. The results revealed that Langmuir isotherm provided a better fit to the experimental data. Pseudo second-order was applicable to describe adsorption kinetics. The higher uniform Ag dispersion was a key factor for the higher mercury uptake. TiO2 supported silver adsorbent showed higher mercury adsorption than the commercial one by approximately 2 times. Chemisorption of mercury onto silver active sites was confirmed by an amalgam formation found in the spent adsorbents.  相似文献   

18.
The widely use of silver nanoparticles (AgNPs) as antimicrobial agents gives rise to potential environmental risks. AgNPs exposure have been reported to cause toxicity in animals. Nevertheless, the known mechanisms of AgNPs toxicity are still limited. In this study, we systematically investigated the toxicity of AgNPs exposure using Drosophila melanogaster. We show here that AgNPs significantly decreased Drosophila fecundity, the third-instar larvae weight and rates of pupation and eclosion in a dose-dependent manner. AgNPs reduced fat body cell viability in MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. AgNPs caused DNA damage in hemocytes and S2 cells. Interestingly, the mRNA levels of the entire metallothionein gene family were increased under AgNPs exposure as determined by RNA-seq analysis and validated by qRT-PCR, indicating that Drosophila responded to the metal toxicity of AgNPs by producing metallothioneins for detoxification. These findings provide a better understanding of the mechanisms of AgNPs toxicity and may provide clues to effect on other organisms, including humans.  相似文献   

19.
In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV–Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV–Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24–38 nm for gold and 30–45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.  相似文献   

20.
巯基乙胺改性蛭石对水体中Ag(I)的吸附性能研究   总被引:2,自引:0,他引:2  
用巯基乙胺(MEA)来改性天然蛭石,并利用FTIR、BET、TG-DSC等手段对蛭石和改性蛭石进行表征,分析结果显示MEA成功负载到蛭石上.同时,研究改性蛭石对Ag+的吸附性能,结果表明,经过巯基乙胺改性后蛭石的吸附能力得到较大提升Ag+的去除率从20%提升到79%,吸附大约在200min达到平衡,吸附剂最佳投加量为2g/L左右,pH值在6~12范围内都有较好的吸附效果.Langmuir等温吸附模型和准二级动力学模型能够很好的解释VER和MEA-VER对Ag+的吸附过程.VER和MEA-VER对Ag+的吸附机理主要有电荷吸附和配位吸附.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号