共查询到19条相似文献,搜索用时 59 毫秒
1.
设施菜田土壤N2O产生对O2的响应 总被引:1,自引:0,他引:1
以添加(DIS)/不添加(DI)玉米秸秆的常规设施菜田土壤为研究对象,通过室内培养试验,利用在线自动监测培养系统,在不同初始氧气体积分数下(0%、1%、3%、5%和10%)监测土壤N_2O、NO、N_2和CO_2产生量的动态变化,并同步分析了土壤无机氮(NO-2、NO-3、NH+4)含量,同时设置添加Na Cl O3的处理抑制土壤NO-2的氧化,以期对比研究不同碳投入菜田土壤N_2O产生量对O_2的响应.结果表明,厌氧条件下土壤N_2O产生量显著高于有氧条件下土壤N_2O产生量(P0.01).当氧气体积分数≤1%时,添加秸秆的(DIS)土壤N_2O产生量显著高于未添加秸秆的(DI)土壤(P0.01).土壤中氧耗竭时会观察到明显的N_2O产生速率峰值,但N_2产生速率峰值随着初始氧气体积分数的升高极显著降低(P0.01),反之,土壤中如果没有出现氧耗竭的现象,则N_2O和N_2产生量随着初始氧气体积分数的升高显著降低(P0.01).初始氧气体积分数介于1%~5%时,培养过程中会观察到持续的NO-2累积,且在该氧梯度内N_2O/(NO+N_2O+N_2)指数显著高于0%以及10%初始氧气体积分数的处理,此外,添加Na Cl O3后,当初始氧气体积分数为5%和10%时,持续增加的NO-2与N_2O产生量两者之间线性相关(R2≥0.85).本研究结果表明,低氧条件下不完全的反硝化和NO-2诱导的硝化细菌反硝化共同作用,显著增加了土壤N_2O的产生量和N_2O/(N_2O+NO+N_2)指数;但是,有氧条件下土壤N_2O的产生量显著低于厌氧条件(P0.01). 相似文献
2.
太湖地区湖水与河水中溶解N2O及其排放 总被引:8,自引:2,他引:8
水体是N2O排放的重要来源.2000-09~2001-09,每月2次采样(重复3次)连续监测太湖地区太湖和大运河水体N2O排放通量和水中溶解的N2O浓度,还同时监测不同深度水样中的N2O浓度.结果表明,太湖N2O-N的年均排放通量为3.53 μg/(m2·h),而大运河已高达122.5,μg/(m2·h).太湖湖水中溶解N2O-N浓度为0.36μg/L,大运河河水中浓度高达11.31μg/L,浅水型水体是N2O排放的源.结果还表明,不同深度水中N2O浓度差异不明显,而时间差异显著.水面N2O的排放通量和水中溶解的N2O浓度呈显著正相关关系,二者又都与水温呈显著正相关. . 相似文献
3.
N2O是一种重要的温室气体,是由多种微生物的硝化与反硝化作用产生,但是它产生的生物地球化学机制还不十分清楚。本文结合N2O产生的微生物过程,阐述了国内外利用同位素标记法、N2O的δ15N和δ18O双同位素法、N2O的δ15Nα(14N15N16O)和δ15Nβ(15N14N16O)、SP值同位素异构体法以及多种同位素法相结合研究N2O的产生机制及微生物过程,比较了这些方法的优缺点,尤其重点阐述了近些年来兴起的N2O同位素异构体计算各过程贡献比例及其判别源与汇的理论及其应用。15N同位素富集因子法和SP值法也分别应用于产生N2O的微生物群落结构、数量和活性变化的研究,以从根本上达到控制N2O排放量的目的。同时指出同位素方法研究N2O产生机制的困难和不足。 相似文献
4.
淹水水稻土消耗N2O能力及机制 总被引:1,自引:0,他引:1
大量研究表明淹水厌氧状态下的水稻田等湿地生态系统中N2O负排放量巨大,对缓解大气温室气体效应有重要意义,但水稻土壤对大气N2O的吸收消耗潜力以及调控潜力发挥的微生物机制却鲜见报道.本实验以表层渍水水稻土壤(0~5 cm)为研究对象,通过室内厌氧培养手段,分析环境N2O浓度的提高对土壤N2O消耗能力的影响以及nosZ基因丰度的变化规律.结果表明,淹水厌氧状态下的水稻土壤中nosZ基因绝对丰度(以干土计)在DNA水平上达到108 copies·g-1,具有很强的N2O转化还原潜力.回归分析结果显示环境N2O浓度与土壤N2O消耗速率显著线性正相关(r2=1,P<0.001),土壤N2O消耗能力可被高浓度的环境N2O极大程度激发,达到4567.99 μg·(m2·h)-1.与此同时较高水平的nosZ基因丰度在不同浓度N2O处理间无显著差异,说明DNA水平上的nosZ基因丰度可能已经不是限制N2O还原的关键因子,微生物调控因子需进一步探索. 相似文献
5.
厌氧条件下砂壤水稻土N2、N2O、NO、CO2和CH4排放特征 总被引:1,自引:0,他引:1
了解厌氧条件土壤反硝化气体(N2、N2O和NO)、CO2和CH4排放特征,是认识反硝化过程机制的基础,并有助于制定合理的温室气体减排措施.定量反硝化产物组成,可为氮转化过程模型研发制定正确的关键过程参数选取方法或参数化方案.本研究选取质地相同(砂壤土)的两个水稻土为研究对象,通过添加KNO3和葡萄糖的混合溶液,将培养土壤的初始NO-3和DOC含量分别调节到50 mg·kg-1和300 mg·kg-1,采用氦环境培养-气体及碳氮底物直接同步测定方法,研究完全厌氧条件下土壤N2、N2O、NO、CO2和CH4的排放特征,并获得反硝化气态产物中各组分的比率.结果表明,在整个培养过程中,两个供试土壤的N2、N2O和NO累积排放量分别为6~8、20和15~18 mg·kg-1,这些气体排放量测定结果可回收土壤NO-3变化量的95%~98%,反硝化气态产物以N2O和NO为主,其中3种组分的比率分别为15%~19%(N2)、47%~49%(N2O)和34%~36%(NO);但反硝化气体产物组成的逐日动态均显现为从以NO为主逐渐过渡到以N2O为主,最后才发展到以N2为主.以上结果说明,反硝化气体产物组成是随反硝化进程而变化的,在以气体产物组成比率作为关键参数计算各种反硝化气体产生率或排放率的模型中,很有必要重视这一点. 相似文献
6.
在常温条件下,采用批次试验结合同位素分析技术,研究不同溶解氧(DO)浓度下短程硝化过程N_2O的释放量及产生途径.结果表明,不同溶解氧条件下,N_2O的释放量与NO_2~--N浓度显著相关,当NO_2~--N浓度大于3 mg·L~(-1),短程硝化过程开始出现N_2O的释放,且随着NO_2~--N浓度的增加而增加.当溶解氧浓度分别为0. 5、1. 5和2. 5 mg·L~(-1)时,N_2O的释放量占进水总氮的比例分别为4. 35%、3. 27%和2. 63%,随着溶解氧的升高,N_2O的释放量占进水总氮的比例降低.短程硝化过程控制溶解氧在2. 5 mg·L~(-1),既可以提高比氨氧化速率,又可以减少N_2O的产生.同位素测定结果表明,当溶解氧为0. 5 mg·L~(-1)时,只有AOB反硝化过程生成N_2O.但当溶解氧升至1. 5 mg·L~(-1)时,有4. 52%的N_2O通过NH_2OH氧化过程生成,AOB反硝化过程生成的N_2O占95. 48%.继续升高溶解氧到2. 5 mg·L~(-1)时,NH_2OH氧化过程生成的N_2O比例增加至9. 11%,AOB反硝化过程生成的N_2O占90. 89%,溶解氧浓度的改变会影响短程硝化过程N_2O的产生途径,避免过高的NO_2~--N积累,可以减少N_2O的产生. 相似文献
7.
漂浮水生植物对富营养化水体中N2O产生及输移过程的调节作用 总被引:1,自引:0,他引:1
漂浮水生维管束植物具有发达的通气组织,然而关于其传输水体中产生温室气体N_2O方面的研究还很匮乏.本研究以漂浮水生植物凤眼莲为代表,利用稳定氮同位素示踪技术,设计能够分隔根室和叶室的水生植物生长系统,通过微宇宙实验定量追踪N-15标记的氮素在凤眼莲根系介导下的转化途径、N_2O产生规律及N_2O通过通气组织向空气的传输过程.研究结果表明,加入水体的~(15)NO_3~-有少部分通过异化还原成为铵(DNRA)过程转化为NH_4~+-~(15)N,主要通过反硝化反应生成N_2O;加入的~(15)NH_4~+主要发生了耦合硝化-反硝化反应.种植凤眼莲均使叶室中N_2O-~(15)N原子百分超和~(15)N_2O浓度明显高于无植物的对照,一方面说明凤眼莲根系能够促进反硝化、硝化-反硝化反应过程,同时也说明水体中的~(15)N_2O有相当一部分通过植株体传输到空气中.凤眼莲通气组织主要通过分子扩散从高浓度空间向低浓度空间输送~(15)N_2O.在标记NO_3~--~(15)N的水体中,凤眼莲在前期促进了~(15)N_2O向顶空排放,但并未在整个生长期持续促进N_2O释放.在标记NH_4~+-~(15)N的水体中,植株体富集是NH_4~+-~(15)N的一个主要归趋途径,但同时也有部分NH_4~+-~(15)N转化为N_2O通过植株通气组织持续、缓慢地释放到顶空当中.研究结果阐明了漂浮植物对水体氮转化过程及N_2O输移途径的调节作用,可为全面理解水体生态系统氮循环过程提供理论基础. 相似文献
8.
农业源溪流与农田生态系统有着紧密的水文连接,其会随着农业非点源氮(N)污染的加剧而成为重要的N汇和氧化亚氮(N_2O)间接排放源.本研究采用静态暗箱-气相色谱法于2015年6~9月(所研究区域的雨季)原位测定了长江上游紫色土丘陵区农业源溪流的N_2O间接排放通量.结果表明,农业源溪流雨季中N_2O平均排放通量为12. 8μg·(m~2·h)~(-1),接近其所在区域内同季节农田的N_2O直接排放水平,是重要的农业N_2O间接排放源.该农业源溪流中N_2O间接排放系数值(EF5r=0. 01%)远低于IPCC的建议值(0. 25%)和重新计算的全球平均值(0. 20%),然而,全球EF5r的现有数据量仍十分有限、且有较大的空间差异,应加强对此类N_2O间接排放的研究,从而进一步修正EF5r的精度、减少N_2O间接排放估算的误差.本研究的N_2O间接排放通量与水中NO-3-N浓度正相关,反硝化是N_2O的主要产生过程.雨季中较强的降雨(如连续降雨日内降雨 9 mm)可促进溪流中NO-3-N浓度在雨后短期内急剧升高,进而激发水中N_2O间接排放通量的明显增加. 相似文献
9.
10.
放牧对草原土壤N2O产生及微生物的影响 总被引:8,自引:1,他引:8
利用AIM乙炔抑制法,首次测试了我国内蒙古放牧和非放牧羊草草原土壤N2O产生的微生物过程;通过分析不同类型草原土壤N2O产生的微生物过程和相关微生物菌群的季节变化,研究了放牧行为对于草原土壤N2O微生物产生过程的影响.放牧行为改变了土壤结构,有利于土壤微生物反硝化作用的发生,在一定程度上降低了草原土壤N2O的排放.揭示了内蒙古草原土壤N2O产生是以异养硝化作用过程为主的微生物过程,解释了内蒙古典型草原土壤N2O通量较低和其季节变化的微生物学机理. 相似文献
11.
12.
13.
Fe3+对同步硝化反硝化过程氮元素迁移转化及N2O释放的影响 总被引:2,自引:0,他引:2
采用SBR反应器,研究了不同浓度的Fe3+对同步硝化反硝化(simultaneous nitrification denitrification,SND)过程中氮元素迁移转化去除和N2O释放的影响.结果表明,在同步硝化反硝化过程中,系统中Fe3+浓度为20 mg·L-1时可以提高系统对氮的去除率,而60 mg·L-1的Fe3+则会对其产生抑制效果.并且,高浓度的Fe3+会刺激SND过程中N2O的释放,N2O转化率也有所提高.这主要是因为:1高浓度的Fe3+会导致污泥脱氢酶活性降低,使得NO-2在好氧阶段大量累积;2高浓度的Fe3+减少了SND过程前置厌氧阶段胞内聚合物(polyhydroxybutyrate,PHB)的含量,使得后续反硝化过程碳源减少.Fe3+对SND过程中总磷的去除有促进作用,并且Fe3+浓度越高,总磷去除率越高,这主要是因为Fe3+的存在使系统中发生了化学除磷作用. 相似文献
14.
文章通过对国内外污水生物脱氮过程中氧化亚氮(N2O)产生途径最新研究成果的总结,着重讨论了污水生物处理过程中N2O释放的控制措施。在硝化过程中,N2O由氨氧化菌(AOB)的中间产物羟胺(NH2OH)和硝酰基(NOH)的分解以及AOB还原亚硝酸盐的过程产生;反硝化过程中,N2O还原酶(N2OR)的活性受到抑制,使得N2O不能被及时被还原而导致N2O积累。基于上述N2O产生途径提出了控制N2O释放量的控制措施:控制曝气量避免好氧硝化过程中DO浓度过低和缺氧反硝化过程中存在DO;通过延长污泥龄、增大内回流比和分段进水等措施控制硝化和反硝化过程中的亚硝酸盐浓度:缩短初沉池停留时间或投加外碳源,并选取甲醇或乙醇等易降解有机物作为碳源。今后可通过深入研究N2O产生机理和优化污水处理厂N2O释放量的准确检测,充分认识污水处理厂中N2O的产生环节,进一步指导污水厂N2O的释放控制。 相似文献
15.
农田土壤N2O产生的关键微生物过程及减排措施 总被引:27,自引:7,他引:27
氧化亚氮(N2O)作为一种重要的温室气体,其全球排放总量仍然在持续上升.它不仅可以产生温室效应,还可以间接破坏臭氧层,使其在全球气候变化和生态环境变化研究中备受关注.土壤生态系统是大气中N2O的最重要排放源.本文详细论述了农田土壤中反硝化作用、硝化作用、硝化微生物的反硝化作用以及硝酸盐异化还原成铵作用等过程产生N2O的微生物学机制,并从土壤理化性质(土壤pH、氮素、有机质、土壤温度和湿度)和土壤生物等方面对农田土壤N2O排放的影响进行综述,在此基础上对农田土壤N2O的减排措施进行总结,并就今后农田土壤N2O排放的研究重点和方向进行了展望,为调控农田土壤温室气体排放、氮转化过程和提高氮素利用效率提供科学依据. 相似文献
16.
17.
有效控制氮磷输入是水质持续改善的关键因素.为识别澜沧江水系水体中氮磷浓度、氮污染物来源及其空间分布特征,在澜沧江流域开展了干流和支流水样的采集,分析流域不同区域水体氮磷浓度,并利用氮氧同位素技术结合稳定同位素SIAR模型,解析了水系不同区域氮素来源及其贡献率.结果表明:①澜沧江水系氮浓度偏低,ρ(TN)分布在0.34~4.18 mg·L-1之间,从上游至下游有升高趋势;ρ(TP)分布在0.11~2.34 mg·L-1之间.②澜沧江水系的δ15 N-NO3-和δ18 O-NO3-值分别分布在-5‰~5‰和-16‰~16‰之间,主要落在降雨及肥料和土壤氮范围内,主要存在硝化作用.③澜沧江干流中土壤氮和化学肥料的贡献率分别为37.67%~42.41%和34.22%~38.56%,粪便和生活污水占15.01%~20.79%,大气沉降仅占4.49%~7.32%.中游支流和下游支流中土壤氮的贡献明显高于化学肥料,土壤氮的贡献率达53.97%~61.57%,化学肥料占33.37%~38.30%,而大气沉降、粪便和生活污水的贡献率较低.研究分析了澜沧江水系上、中和下游干流和支流的氮素来源,为该区域的水质管理和污染源治理提供了依据. 相似文献
18.
一株产生低水平量N2O的好氧反硝化菌 总被引:3,自引:1,他引:3
在装液量为2.5L发酵罐中对一株高效好氧反硝化菌Delftia tsuruhatensis设计三因素二水平L(423)的正交实验,对其进行N2O控逸最优条件的研究,三个因素分别为碳氮比(COD/N)、溶解氧和pH。结果发现,对该菌株N2O气体影响最大的因素为COD/N,其次为DO和pH值。在最优条件(碳源为柠檬酸三钠、COD/N=15、DO=30%饱和溶解氧、pH=7.5)下,该菌产N2O气体总量为0.20mg,N2O-N产量占TIN去除量的0.04%。 相似文献
19.
温度对污水脱氮系统污染物去除效果及氧化亚氮释放的影响 总被引:1,自引:5,他引:1
污水生物脱氮过程是大气中的氧化亚氮(N2O)的一个重要来源.以anoxic-oxic sequencing batch reactors(A/O SBRs)工艺为研究对象,考察了5组不同温度(10、20、25、30、35℃)条件下系统的污染物去除效果和氧化亚氮释放情况.结果表明,温度对COD的去除无显著影响,但对氮素的去除有明显影响:在一定范围内,随温度的升高氮的去除率升高,但温度超过25℃后,随着温度的上升氮的去除效果下降;温度对氧化亚氮的释放量有重要影响,随温度的升高氧化亚氮的释放量逐渐降低[释放量(以MLSS计)依次为:530.1、260.8、218.3、104.7、57.7μg.g-1].对于A/O SBRs工艺,氧化亚氮的释放主要集中的好氧段,缺氧段几乎无氧化亚氮释放. 相似文献