首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究石灰氮对设施菜地土壤N_2O排放的影响,观测了施用尿素、石灰氮、半量尿素与半量石灰氮混施和对照等4个处理设施菜地土壤N_2O排放以及土壤中氮素变化.结果表明,施用石灰氮能显著降低设施菜地土壤N_2O排放量,对照、施用尿素、施用石灰氮和半量尿素与半量石灰氮混施的N_2O累积排放量分别为4135.80μg·kg~(-1)、5794.25μg·kg~(-1)、1957.03μg·kg~(-1)和4341.31μg·kg~(-1),施用尿素的N_2O累积排放量比对照增加了40.1%,施用石灰氮、半量尿素与半量石灰氮混施比施用尿素分别减少了66.2%和25.1%的N_2O排放量,半量尿素与半量石灰氮混施的N_2O累积排放量与对照的差异不显著(P0.05).尿素处理的N_2O排放系数为0.17%,而石灰氮处理和半量尿素与半量石灰氮混施处理的N_2O排放系数则分别减少至0.06%和0.13%.由此表明,施用石灰氮是减少设施菜地土壤N_2O排放的一项有效措施.  相似文献   

2.
设施栽培是我国蔬菜生产的重要方式之一.设施菜地土壤高温、高湿、持续且大量施肥等特点,可能改变土壤氮素周转及N_2O排放.寿光是我国重要的蔬菜生产基地之一.然而,鲜有研究关注寿光市设施菜地土壤N_2O排放规律及其影响因素.本文以寿光市农田、种植6、12年设施菜地及荒废设施菜地为例,研究农田转变为设施菜地后土壤N_2O排放规律,并探讨其影响机理.结果表明,设施菜地土壤N_2O年排放量明显高于农田及荒废设施菜地,且种植6年设施菜地土壤N_2O年排放量显著大于种植12年设施菜地(P0.05).其原因可以归结为:(1)设施菜地种植过程中施加大量有机肥及化肥,会促进土壤氮素周转.(2)设施菜地土壤温度、含水率及硝态氮含量均高于农田,且均与土壤N_2O排放通量呈显著正相关关系(P0.05),表明设施菜地土壤高温、高湿的环境特点会促进土壤硝化过程,加速土壤N_2O排放.(3)设施菜地具有较高的土壤脲酶活性,且与土壤硝态氮含量、含水率呈显著正相关关系(P0.05),表明农田变为设施菜地增加了土壤脲酶活性,促进土壤硝化过程及硝态氮累积,这可能间接加速土壤N_2O排放.  相似文献   

3.
选取7种具有10 a以上种植史的菜地土壤,通过室外盆栽试验研究施尿素条件下影响冬季菜地N2O排放的主要土壤因素.结果表明,不同土壤间N2O排放具有显著差异.对照菜地的季节性N2O-N排放总量为2.74~4.37 mg·盆-1,排放量与土壤本底的铵态氮、硝态氮含量及pH值呈弱线性相关.施尿素不仅促进了N2O的排放,而且加大了土壤间N2O排放的差异,季节性排放总量为6.39~29.38 mg·盆-1.与2000-2001年麦田相比,虽然菜地施尿素量低于麦地,但是N2O排放量无明显减少,菜地和麦地土壤的N2O排放均与土壤有机碳含量、全氮含量、C/N比值呈显著负相关.此外,施尿素菜地的N2O排放与土壤粘粒含量呈显著负相关,与土壤砂粒含量呈显著正相关.进一步研究表明,化肥氮的N2O-N转化系数主要受土壤碳、氮含量的影响.  相似文献   

4.
土壤理化特性对冬季菜地N2O排放的影响   总被引:1,自引:0,他引:1  
《农村生态环境》2005,21(2):7-12
  相似文献   

5.
通过盆栽模拟试验,探究玉米秸秆生物炭施用对菜地温室气体N2O、CO2与CH4排放及土壤理化性质的影响。结果表明,生物炭施用抑制了菜地N2O排放,NB1(施N 400 kg·hm-2,生物炭20 t·hm-2)和NB2(施N 400kg·hm-2,生物炭40 t·hm-2)的N2O累积排放量分别比N处理(施N 400 kg·hm-2)低76.4%和70.7%,但抑制效应并未随生物炭用量的增加而加强。生物炭施用增强了CO2排放,但对CH4排放影响不显著。NB1和NB2累积CO2排放量分别为N处理的1.8和2.1倍,不容忽视的是,这2种处理同时增加了土壤中有机碳含量,分别比N处理高15.2%与21.3%。NB1和NB2在不降低甚至提高蔬菜产量的基础上,提高了土壤中NH4+-N含量与p H值,降低了NO3--N含量。p H值和NH4+-N含量分别平均比N处理高0.265和34.9%,NO3--N含量平均比N处理低12.7%,因此生物炭具有减排N2O与改良菜地土壤质量的巨大潜力。但生物炭引起的CO2排放以及对土壤有机碳增加的净影响效应尚需进一步研究。  相似文献   

6.
冻融条件下土壤N_2O排放研究进展   总被引:2,自引:0,他引:2  
随着全球气候变化以及突发性气候事件频繁发生,温室气体逐渐成为公众普遍关注的问题.作为温室气体的重要组成之一,土壤N_2O气体排放也一直都是研究的焦点.但长期以来开展的土壤N_2O监测大多在作物生长季节,随着研究的深入和领域的拓展,很多试验和数据证实冻融条件下土壤N_2O的排放不容忽视.冻融条件下土壤N_2O排放主要受土壤水分形态和分布,土壤团聚体形成或破碎,土壤微生物种群和数量,以及N_2O产生途径变化等因素影响.从以上几个方面综述了国内外冻融条件下土壤N_2O排放的研究进展.结合作者相关研究结果认为应加强以下重点领域研究:土壤团聚体形成或破碎导致微生物可利用的有机碳的包被或释放,冻融过程微生物种群变化引起对不同氮素形态的利用效率差异.解决这些问题将可以进一步丰富土壤温室气体产排领域的研究内容和理论体系.  相似文献   

7.
采用静态箱-气相色谱法研究了免耕和常规耕作下玉米生长季华北平原潮土N2O和CO2的排放特征。结果表明,免耕土壤N2O累积排放量(以N2O-N计,下同)为0.31 kg.hm-2,略高于常规耕作土壤的0.27 kg.hm-2,两者没有显著差异。灌水、强烈降水或连续阴天会诱发土壤大量排放N2O,免耕处理N2O排放峰值(28.1~38.4μg.m-2.h-1)高于常规耕作处理(18.6~25.7μg.m-2.h-1)。免耕处理CO2累积排放量(以CO2-C计,下同)为1 880 kg.hm-2,显著高于常规耕作土壤的1 333 kg.hm-2。土壤N2O和CO2排放通量与土壤温度呈显著指数相关,常规耕作处理下的相关程度更高。  相似文献   

8.
通过田间试验,采用静态箱-气相色谱法研究不同施肥模式下硝化抑制剂(DCD)和生物炭对菜地土壤氧化亚氮(N2_O)排放及土壤特性的影响。试验包括单施化肥氮与有机肥替代25%化肥氮2种施肥模式,共设6个处理:(1)单施化肥氮(CF);(2)单施化肥氮DCD(CFDCD);(3)单施化肥氮生物炭(CFBC);(4)有机肥替代25%化肥氮(MF);(5)有机肥替代25%化肥氮DCD(MFDCD);(6)有机肥替代25%化肥氮生物炭(MFBC)。研究结果表明,施氮量为225 kg·hm-2条件下,有机肥替代25%化肥氮处理较单施化肥氮处理显著降低了菜地N2_O累积排放量和土壤硝态氮含量,降幅分别为46.9%和30.7%。整个菜心季土壤N2_O总排放量与收获季0~15 cm土层土壤硝态氮含量之间呈极显著的线性正相关关系,表明有机肥部分替代化肥氮一定程度上改变了土壤中氮素营养的存在形态及氮转化路径。CFDCD和CFBC处理较CF处理显著降低了土壤N2_O排放,降幅达72.8%和38.8%,MFDCD和MFBC较MF处理土壤N2_O排放减少了44.9%和10.3%,表明在本试验条件下,DCD处理抑制菜地N2_O排放的效果相对高于生物炭处理,而生物炭抑制菜地N2_O排放的效果在单施化肥氮模式下表现得更明显。与此同时,DCD和BC配施处理均有效降低了土壤硝态氮的积累,且DCD处理在整个菜心生长季0~15 cm土壤铵态氮含量明显高于相同施肥模式下的其他处理。综上可知,有机肥部分替代化肥氮模式、生物炭与DCD的添加均能有效抑制菜地土壤N2_O的排放并降低土壤硝态氮水平。本研究结果可为调控菜地土壤N2_O气体排放提供提供参考。  相似文献   

9.
通过室内模拟的方法,研究了潮土两种粒径范围(≤1cm粒径,简称1cm粒径;≤0.25mm,简称0.25mm粒径)土壤在冻融过程中N2O排放的特征.结果表明,冻结前,0.25mm粒径土壤N2O排放通量比1cm粒径土壤平均高26.5%;冻结过程中,0.25mm粒径土壤比1cm粒径土壤较早达到稳定冻结状态(分别在冻结1410min和2610min时),并且在稳定冻结状态下,0.25mm粒径土壤N2O排放通量小于1cm粒径土壤;融化阶段,0.25mm粒径土壤比1cm粒径土壤较早出现N2O排放通量高峰(分别在融化2670min和2790min时),并且其峰值小于1cm粒径土样.1cm粒径土壤在冻结过程、融化过程和整个冻融过程中,土壤平均N2O排放量分别比0.25mm粒径土壤多3952.74、1512.51和5465.25μgm-2,相应增加76.83%、18.65%和41.23%.建议在土壤冻结前平整土地以减少N2O排放.  相似文献   

10.
麦秸还田与土壤耕作对稻季CH_4和N_2O排放的影响   总被引:2,自引:0,他引:2  
2008年在大田试验条件下,设置麦秸还田旋耕、麦秸不还田旋耕、麦秸还田翻耕、麦秸不还田翻耕4个处理,采用静态暗箱-气相色谱法田间原位观测稻麦两熟制农田水稻生长季CH_4和N_2O排放通量,研究小麦秸秆全量还田与土壤耕作两项技术措施对稻季CH_4和N_2O排放的影响及其温室效应,以期为稻麦两熟制农田温室气体减排提供对策.结果表明:麦秸还田对稻季CH_4排放总量的影响达极显著水平,麦秸还田与耕作方式的互作效应对CH_4排放总量有显著影响,麦秸还田和耕作方式对N_2O排放总量的影响均达极显著水平;不同麦秸还田与土壤耕作处理稻季OH4排放总量为:麦秸还田旋耕>麦秸还田翻耕>麦秸不还田翻耕>麦秸不还田旋耕,N_2O的排放总量为:麦秸不还田翻耕>麦秸不还田旋耕>麦秸还田翻耕>麦秸还田旋耕;与麦秸不还田相比,相同耕作措施下麦秸还用排放CH_44和N_2O所产生的全球增温潜势(GWP)明显提高.麦秸还田条件下旋耕处理的GWP高于翻耕处理,而"单位产量的GWP"无明显差异,麦秸不还田条件下采用旋耕措施较翻耕可减轻温室效应.  相似文献   

11.
稻田是重要的N_2O排放源,而稻田N_2O排放与土壤水分和施肥密切相关。南方丘陵区是中国水稻的重要生产地,然而由于地形海拔的差异,稻田的水分条件相差很大。该地域典型的稻田水分包括持续淹水、中期晒田(除中期晒田和收获前落干外,保持淹水)以及耕灌雨养(灌水整地插秧,水稻分蘖盛期后不灌溉,依靠自然降水)。稻草还田为土壤微生物提供了大量的碳、氮基质,不同的稻草还田方式(深施、表施)会影响微生物对稻草中的碳、氮的利用,从而可能会影响N_2O排放。采用静态箱-气象色谱法研究了南方丘陵区稻田土壤在不同水分条件(持续淹水、常规灌溉和耕灌雨养)下,秸秆还田方式(无稻草、稻草翻耕入土、稻草覆盖)对N_2O排放的影响。当土壤有水层时,N_2O排放微乎其微;当水层落干后,N_2O排放快速上升。耕灌雨养的N_2O累积排放通量显著高于常规灌溉和持续淹水处理的N_2O累积排放通量。在耕灌雨养条件下,稻草翻耕入土处理下N_2O排放为2.566 kg·hm~(-2),比无稻草处理增加54%,而稻草覆盖处理对N_2O排放影响很小。在常规灌溉和持续淹水条件下,无论是否进行稻草还田,N_2O排放均很弱,仅为-0.003~0.030 kg·hm~(-2)。研究结果表明,水分是调控稻田N_2O排放的主要因子,在田间无水层条件下,稻草翻耕入土有促进N_2O排放的潜力。  相似文献   

12.
为明确秸秆生物质炭对酸化茶园土壤改良及温室气体排放的影响,采用室内培养试验方法,研究了小麦秸秆生物质炭添加(对照CK:0 g·kg~(-1);低生物质炭B1:8 g·kg~(-1);中生物质炭B2:24 g·kg~(-1);高生物质炭B3:48 g·kg~(-1))对茶园土壤pH值和温室气体排放的影响。结果表明,与对照组CK相比,添加生物质炭显著抑制了酸性茶园土壤N2O的排放(P=0.000),但抑制效应并未随生物质炭添加量的增加而加强,培养期间各处理N2O累积排放量分别为:CK 2.366 mg·kg~(-1),B1 0.444mg·kg~(-1),B2 0.142 mg·kg~(-1),B3 0.207 mg·kg~(-1)。低生物质炭(8 g·kg~(-1))和中生物质炭(24 g·kg~(-1))处理的综合增温潜势(GWP)分别比对照组CK降低了33.45%和25.77%,而高生物质炭处理(48 g·kg~(-1))与对照处理差异不显著。这表明施用中低量生物质炭更有利于茶园土壤的固碳减排。此外,生物质炭显著提高了酸化茶园土壤p H值,生物质炭添加比例越大,p H值越高,故施用作物秸秆生物质炭有利于酸化土壤改良。相关性分析结果表明,土壤N_2O排放与pH值之间呈显著负相关关系,土壤p H值的升高可能是引起N_2O排放量降低的重要原因。  相似文献   

13.
2014年在大田试验条件下,以水稻品种苏101为供试材料,设置超高产生产技术、常规生产技术和减肥生产技术3个处理组合,采用静态暗箱-气相色谱法,开展了不同栽培技术下水稻生长季田间甲烷(CH4)和氧化亚氮(N2O)排放的原位监测试验,研究不同栽培技术对稻季CH4和N2O排放的影响及其温室效应,以期为稻麦两熟农田温室气体减排提供对策。结果表明:(1)不同栽培技术下水稻生长季CH4排放通量总体均呈先升高后降低的变化趋势,CH4排放峰值出现在水稻生育前期,移栽至有效分蘖临界叶龄期CH4累积排放量占全生育期排放总量的比例为79.1%~84.5%,而N2O主要在水稻生育中期搁田的时候排放量较大;(2)不同栽培技术对稻季CH4和N2O排放有显著影响,CH4季节排放总量表现为超高产生产技术(423.68 kg·hm-2)减肥生产技术(407.51 kg·hm-2)常规生产技术(195.96 kg·hm-2),N2O季节排放总量表现为常规生产技术(3.88 kg·hm-2)超高产生产技术(2.96 kg·hm-2)减肥生产技术(2.72 kg·hm-2);(3)超高产生产技术稻季排放CH4和N2O产生的增温潜势最高(CO2 11 473.6 kg·hm-2),显著高于其他处理,比常规生产技术(CO2 6 055.7 kg·hm-2)增加89%,比减肥生产技术(CO2 10 998.4 kg·hm-2)增加4.3%;(4)超高产生产技术在增加水稻产量的同时也增加了太湖地区水稻生长季的温室效应,但是其单位产量的全球增温潜势低于同样实施秸秆还田的减肥生产技术。  相似文献   

14.
为明确硝化抑制剂对覆膜稻田CH_4和N_2O排放的影响,采用静态箱-气相色谱法和荧光定量PCR技术研究了双氰胺(Dicyandiamide,DCD)和2-氯-6-(三氯甲基)吡啶(Nitrapyrin,CP)两种硝化抑制剂的配施(处理为:覆膜施用尿素,PM;覆膜施用尿素配施DCD,PM+DCD;覆膜施用尿素配施CP,PM+CP)对覆膜栽培下稻田CH_4和N_2O排放及其相关功能菌群落丰度的影响。结果表明:整个水稻生长期,配施DCD(PM+DCD)显著降低N_2O季节总排放(P0.05),降幅达24%,提高CH_4季节总排放(P0.05);配施CP(PM+CP)同时降低CH_4和N_2O的季节总排放,降幅均为11%。CH_4排放主要集中在水稻分蘖盛期,此阶段,配施DCD显著提高产甲烷菌群落丰度,降低甲烷氧化菌群落丰度(P0.05),而配施CP则降低产甲烷菌群落丰度,显著提高甲烷氧化菌群落丰度(P0.05),这可能是由于配施DCD提高了CH_4排放总量而配施CP降低了CH_4排放。在N_2O排放集中时期(水稻生长前期),配施DCD和CP均降低了氨氧化菌群落丰度,显著提高了反硝化菌群落丰度的趋势(P0.05)。配施DCD(PM+DCD)、配施CP(PM+CP)和覆膜栽培(PM)处理的碳交易成本GWP-cost分别为831、735和822 yuan·hm~(-2);温室气体排放强度GHGI分别为0.69、0.61和0.70 t·t~(-1);产量分别为9.20、9.24和9.00 t·hm~(-2)。因此,综合考虑温室气体效应和经济效益,覆膜栽培稻田模式下,配施CP可以保证增产和减排,值得推广。  相似文献   

15.
农田土壤硝化-反硝化作用与N_2O的排放   总被引:2,自引:0,他引:2  
在北京潮土上研究了冬小麦夏玉米轮作体系下土壤硝化反硝化作用以及N2O排放情况。结果表明,小麦生育期土壤温度及含水量较低,无论是反硝化损失氮量还是土壤的N2O生成排放量均不高。土壤的N2O生成排放量与反硝化氮量相当或低于反硝化氮量。玉米生育期土壤温度升高以及孔隙含水量有较大的改善,反硝化损失氮量、N2O生成排放量有明显上升。通常情况下土壤反硝化损失氮量与N2O排放氮量基本处于同一水平。在玉米十叶期追肥后的较短时间内,N2O总排放量明显高于反硝化损失氮量,说明至少在这一阶段中,硝化作用在北方旱地土壤N2O的排放中发挥了主要作用。在评价北方旱地农田土壤氮素硝化反硝化损失中,硝化作用的氮素损失是不可忽视的重要方面。  相似文献   

16.
为明确控释肥和尿素配合施用对稻季土壤CH_4和N_2O排放的影响,通过田间原位试验,采用人工密闭箱法,观测氮肥(尿素单施、控释肥与尿素配合施用)及不同施氮水平(0、80、160、240 kg·hm~(-2))下水稻生长季土壤CH_4和N_2O的排放通量,以寻求综合温室效应最小的施肥管理措施。结果表明:水稻生长季N_2O排放总量、水稻产量均随氮肥施用量的增加而增加,而CH_4排放总量、综合温室效应与氮肥施用量之间没有显著相关性。控释肥与尿素配合施用对水稻生长季CH_4和N_2O排放及水稻产量的影响因氮肥施用量的不同而不同。与尿素单施相比,不同施氮水平下配合施用控释肥能有效降低N_2O排放总量3.6%~49.6%,其中,烤田期是控释肥发挥减排作用的关键时期。与尿素单施相比,在80 kg·hm~(-2)和160 kg·hm~(-2)施氮水平上,配施控释肥分别增加CH_4排放总量48.1%和27.5%及稻田综合温室效应45.0%和22.8%,而水稻产量无显著差异;在240 kg·hm~(-2)施氮水平上,配施控释肥处理土壤CH_4排放总量降低4.2~15.1%,水稻产量增加5.7%~13.9%,且综合温室效应降低7.5%~19.8%。在240 kg·hm~(-2)施氮水平上,与尿素∶控释肥为3∶7、1.5∶8.5、0∶1的配施处理相比,尿素∶控释肥为4.5∶5.5配施处理的综合温室效应最小,且水稻产量最高。因此,施氮量为240 kg·hm~(-2),尿素和控释肥按4.5∶5.5比例混合施用可作为稻田控释肥推荐施用方式。  相似文献   

17.
不同种植制度对稻田旱作季节CH_4和N_2O排放的影响   总被引:2,自引:1,他引:1  
通过大田试验研究了稻田旱作季节几种典型种植制度对CH4和N2O排放的影响,包括休闲(fallow)、油菜对照(OR-ck)、小麦对照(W-ck)、油菜施N(OR-N)和小麦施N(W-N)5个处理。试验结果表明,稻田旱作季节N2O排放明显,CH4排放量较低,甚至表现为弱的CH4汇。稻田旱作季节N2O排放除受到N肥和种植制度影响外,还受土壤含水量影响,施N处理显著促进了N2O排放,降雨后N2O排放明显。小麦和油菜施N处理N2O平均排放通量分别为18.51和13.47μg.m-2.h-1,季节累积排放量分别为87.31和59.48 mg.m-2,均显著高于对照和休闲处理。不同作物种类间N2O平均排放通量无显著差异,N2O季节累积排放量则表现为小麦显著高于油菜。各处理综合温室效应(100 a)依次为:OR-NW-NW-ckfallowOR-ck。各施N处理综合温室效应以N2O为主,但各无N处理则以CH4为主,也不容忽视。  相似文献   

18.
利用地下气体原位采集系统-气相色谱法,周年监测休耕裸地与轮作菜地(茼蒿-空心菜-大青菜)7、15、30和50 cm土层N_2O浓度变化,旨在探究菜地土壤剖面N_2O扩散通量变化和净周转率.结果显示:菜地土壤剖面N_2O浓度呈现较大的时空变异性,轮作菜地7、15、30和50 cm土层N_2O平均浓度分别达到休耕裸地对应土层的1.9、8.7、9.2与26.7倍,0-30 cm土层土壤N_2O浓度随土层深度增加而增加,30-50 cm土层逐渐降低,表明氮肥施用显著促进了上层土体内N_2O的产生.休耕裸地与轮作菜地4个土层N_2O扩散通量(以N计)变幅分别为-354-420μg m~(-2)h~(-1)与482-1 510μg m~(-2)h~(-1),其中休耕裸地30-50 cm土层N_2O扩散通量为负值,表明该土层N_2O以吸收为主.轮作菜地7-15 cm土层N_2O扩散通量最高为1 510μg m~(-2)h~(-1),分别比0-7 cm、15-30 cm与30-50 cm高68.1%、2.5%与36.6%,表明7-30 cm为N_2O的主要产生位点.休耕裸地与轮作菜地0-15 cm土层间N_2O净周转率以负值为主,15-50 cm以正值为主,表明N_2O的周转在土壤剖面中层(7-30cm)最快.综上,N_2O浓度在土层中的分布情况为从上到下先增加后减少,主要产生位点于30 cm土层并从该层向其上下层扩散输送;结果可为菜地土壤N_2O产生位点的定位及其转化过程的研究提供参考.(图4表2参33)  相似文献   

19.
温度和土壤含水量对温带森林土壤温室气体排放的影响   总被引:3,自引:0,他引:3  
全球温带森林土壤是影响陆地主要温室气体——二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)的重要源和汇,土壤温湿度的交互作用是影响温室气体吸收与释放的重要影响因素,但目前针对温带森林土壤的温湿度变化对温室气体的影响研究甚少。本研究用自动控制温湿度的人工气候箱模拟不同温度(5、10、15℃)和土壤水分含量(最大田间持水量的20%、40%、60%、80%)环境,比较研究3种我国温带典型森林土壤CO2、N2O、CH4的通量动态变化及其综合增温潜势(GWP)。结果表明:温度和土壤含水量增加会导致3种森林土壤的CO2和N2O表现为排放源、CH4为弱吸收汇。其中,阔叶林和针叶林土壤CO2排放通量变化幅度相近,针阔混交林的排放通量波动范围较小于二者;针阔混交林和阔叶林土壤的N2O排放通量变化幅度相近,而针叶林土壤的排放通量波动范围明显高于二者;阔叶林土壤CH4吸收通量随温度和土壤含水量增加的幅度较其他2种林型显著。3种林型土壤GWP受温度和土壤含水量影响的敏感性由高到低依次为阔叶林针叶林针阔混交林。  相似文献   

20.
双季稻田不同种植模式对CH_4和N_2O排放的影响研究   总被引:3,自引:0,他引:3  
以南方典型双季稻种植制度(早稻-晚稻R-R)为对照,采用静态箱-气相色谱法,研究了双季稻田早、晚稻(Oryza sativa L.)改种玉米(Zea mays L.),包括早稻-玉米(R-C)和玉米-早稻(C-R)两种种植模式下周年温室气体排放及其综合增温潜势(GWP),旨在探索出适合双季稻区的低碳农业种植模式,对我国农业应对气候变化温室气体减排具有重大意义。结果表明:不同种植制中水稻种植CH4排放占主导地位,改制玉米N2O排放量显著增加;其中,早稻改制玉米(C-R)的CH4排放比晚稻改制玉米(R-C)显著降低68.5%(P0.05),N2O排放量有所降低,但没有达到显著水平;R-C和C-R模式CH4周年排放总量较R-R模式显著降低53.6%(P0.01)和183.9%(P0.01),但N2O排放分别显著增加257.0%(P0.01)和245.2%(P0.01);不同种植制度增温潜势(按CO2当量计)大小顺序为:R-R(8 855.3 kg·hm-2)R-C(4 881.4 kg·hm-2)C-R(2 116.4 kg·hm-2),且差异达显著水平,结合南方晚稻季温光资源的优势,认为玉米替代晚稻种植(早稻-玉米模式)是一可行的减缓温室效应的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号