首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
利用烟气稀释采样系统,针对不同功能区城市生活垃圾(MSW)样品,分别考虑桶内焚烧和自然堆积焚烧两种常见露天焚烧方式,对城市生活垃圾露天焚烧排放PM2. 5中重金属的污染特征及其居民暴露健康风险进行分析和评估.结果表明,5种不同组分垃圾焚烧排放的重金属中,锌(Zn)含量均为最高,可达1 324. 03~3 703. 12 mg·kg~(-1),镉(Cd)含量最低,为20. 25~63. 68 mg·kg~(-1);地累积指数结果显示,铅(Pb)、Zn、砷(As)和Cd的污染程度较高,自然堆积焚烧下均已达中度及以上污染水平,Cd的地累积污染指数远大于5;人体健康风险评估结果表明,8种重金属(Pb、Zn、Cu、Mn、As、Cd、Cr和Ni)经呼吸暴露的非致癌风险值均小于1,属于安全范围内;自然堆积焚烧下,As和Pb对儿童经皮肤接触的非致癌总风险值大于1,存在非致癌风险; 4种致癌元素(As、Cd、Cr和Ni)的致癌风险值均小于1. 0×10~(-4),但若长期处于这种环境下,会存在较低的潜在致癌风险.  相似文献   

2.
为探讨生物质在明火和阴燃两种不同条件下PM_(2.5)及主要成分的排放差异,选取了7种具有代表性的生物质样品(小麦、水稻、马尾松叶、马尾松枝、杂草、玉米、棉花)进行了燃烧实验,并对PM_(2.5)样品中的7种主要水溶性离子(Na~+、NH_4~+、K~+、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-))及有机碳(OC)、元素碳(EC)、水溶性有机碳(WSOC)、有机酸和左旋葡聚糖(LG)等有机成分进行了分析.结果表明,明火和阴燃条件下PM_(2.5)的排放因子分别为2.82~7.74 mg·g~(-1)和3.24~22.56 mg·g~(-1),阴燃时的排放因子偏高,不同燃料类型也存在一定差异.燃烧排放PM_(2.5)中水溶性离子以Cl~-为最高,占总离子的比例为72%~94%,且与NH_4~+存在显著正相关关系,水溶性离子整体表现为明火条件下的浓度显著高于阴燃条件下的浓度.受阴燃条件下氧气不足的影响,PM_(2.5)中有机组分的浓度表现为阴燃高于明火,进而导致阴燃时PM_(2.5)的排放因子增加.水稻秸秆燃烧烟尘中3种来源特征比值(LG/PM_(2.5)、LG/OC和LG/WSOC)仅为小麦和玉米秸秆燃烧排放相应比值均值的0.34、0.24和0.27倍,表明在不同农作物的收获季节采用上述特征比值进行生物质燃烧来源估算时,应区别对待.  相似文献   

3.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

4.
基于2013—2015年南昌市9个空气环境监测点的连续数据,分析了空气PM_(2.5)、PM_(10)质量浓度(以下简称浓度)的时空变异规律,并以景观格局指数为定量指标,研究了监测点的两种颗粒物浓度与其周边500 m半径、1000 m半径缓冲区的土地利用状况的关系.结果表明:(1)南昌市3年来PM_(2.5)和PM_(10)浓度逐年显著降低.(2)通过聚类分析,9个监测站依据颗粒物污染可分为4大类,表现出一致的城乡梯度差异.(3)在斑块类型水平上,PM_(2.5)和PM_(10)浓度与500、1000 m半径缓冲区的C-PLAND(建筑用地覆盖率)、C-SHDI(建筑用地多样性指数)显著正相关,与1000m缓冲区的F-ED(林地边界密度)显著正相关;与F-PLAND(林地覆盖率)、C-Fi(建筑用地分离度指数)、F-MPS(林地平均斑块面积)显著负相关.在景观水平上,PM_(2.5)和PM_(10)浓度在500 m缓冲区与LPI(最大斑块所占景观比例)显著负相关;与1000 m缓冲区的MPS(平均斑块面积)显著负相关.景观格局指数直接反映土地利用状况,它与PM_(2.5)和PM_(10)浓度的相关性,表现出生态学中典型的"源汇景观"关系.  相似文献   

5.
天津市春季道路降尘PM2.5和PM10中的元素特征   总被引:1,自引:0,他引:1  
为探究天津市春季道路降尘中元素污染特征及来源,于2015年春季采集了天津市道路降尘样品,通过再悬浮得到PM_(2.5)和PM_(10)滤膜样品,继而测定了滤膜样品中16种元素的含量,通过非参数检验、分歧系数法、富集因子法等研究了道路降尘中元素的污染特征、来源和成分谱的相似性.结果表明,天津市春季道路降尘PM_(2.5)和PM_(10)质量分数平均值在1%~20%之间的元素从大到小依次为:SiAlCaFeMgKNa;PM_(10)和PM_(2.5)中元素成分谱分歧系数为0.06,表明两者元素成分谱很相似;PM_(10)和PM_(2.5)中,元素Cd和Cr强烈富集,Zn、Cu、Pb和As显著富集;道路降尘PM_(2.5)和PM_(10)中元素主要来源于土壤风沙尘、建筑尘、交通尘(汽车尾气的排放、轮胎磨损和刹车片磨损)和煤烟尘.  相似文献   

6.
城市PM2.5健康损害评估研究   总被引:3,自引:1,他引:3  
刘帅  宋国君 《环境科学学报》2016,36(4):1468-1476
参考美国Ben MAP软件,提出城市PM_(2.5)健康损害评估的基本框架,并就评估方法和参数使用中的关键问题进行了论述,包括人群健康损害评估指标的确定、空间尺度和时间尺度的选择、健康终点的界定、人群年龄结构的划分、比较的基准的确定,以及"剂量-反应"关系参数和生命价值参数的选择等.本文收集和整理了2014年北京市空气质量监测点PM_(2.5)浓度监测数据及暴露人口、基期死亡率等数据,运用"向标准靠拢(Rollback to Standard)"的方法,估算北京市PM_(2.5)达到空气质量标准情景下的浓度值,以此作为比较的基准,使用美国Ben MAP数据库收录的"剂量-反应"关系参数,分别基于"工资-风险"法模型和人力资本法模型估计生命价值参数,代入本文城市PM_(2.5)健康损害评估的基本框架,计算2014年北京市PM_(2.5)对人群健康的损害.  相似文献   

7.
采集了阳泉市具有代表性的燃煤电厂除尘器下载灰,测定了其PM_(2.5)中元素、离子及EC(元素碳)、OC(有机碳)的含量水平,对其化学组分特征进行了研究,并运用分歧系数法对阳泉与其他地区的燃煤烟尘PM_(2.5)成分谱之间的相似程度进行了比较.结果发现,阳泉市电厂燃煤锅炉排放的细颗粒物(PM_(2.5))中主要组分为SO_4~(2-)、Ca、NO_3~-、OC、EC、Al、Si、Na、Fe、Mg以及Cl~-,占PM_(2.5)总质量的57.22%;Pb在燃煤烟尘PM_(2.5)中相对富集系数最大,达到10.66~15.91,呈显著富集;无烟煤和劣质煤燃烧后烟尘的PM_(2.5)成分谱之间的分歧系数为0.072,认为这两个成分谱必定相似,与其他城市所建立的燃煤烟尘成分谱相比,阳泉市燃煤电厂PM_(2.5)的化学组分具有特异性,尤其是Ca含量明显高于国内其他地区燃煤烟尘Ca的排放.  相似文献   

8.
上海市PM2.5的物理化学特征及其生物活性研究   总被引:3,自引:1,他引:2  
采集了上海市区和郊区春季和夏季的大气PM2.5样品,分析了市区和郊区春夏2季PM2.5质量浓度变化的规律,使用PIXE(Proton Induced X-ray Emission)分析技术获得S、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、Zn、As、Se、Br、Sr、Pb等15种元素的质量浓度.结果表明,上海PM2.5中化学元素的质量浓度在春季 (5?038.6 ng·m-3) 比在夏季 (3?810.6 ng·m-3) 高,春季郊区(2?528.9 ng·m-3) 和市区(2?509.7 ng·m-3) PM2.5中化学元素的质量浓度相当,夏季市区样品 (1?674.2 ng·m-3) 中化学元素质量浓度的总量比郊区(2?136.3 ng·m-3) 的低,但来自人为污染的化学元素 (Cr、Mn、Ti、Ni、Cu、Zn、As、Br、Sr、Pb) 在市区PM2.5中的含量较高;场发射扫描电镜 (FESEM) 分析显示,上海PM2.5主要由烟尘集合体、燃煤飞灰、矿物颗粒、生物质颗粒和不明物质组成,质粒DNA评价揭示上海市区PM2.5比郊区的具有更强的生物活性,主要原因可能在于市区样品中含有较高的重金属元素和较多的烟尘集合体.  相似文献   

9.
2005年四季在北京市不同功能区9个采样点采集大气PM10和PM2.5样品,并对其中有机物污染水平、分布特征及不同功能区PM10和PM2.5中有机物的相关性进行了探讨.结果表明,市区PM10和PM2.5中有机物年均值分别为41.39 μg/m3和34.84 μg/m3,是对照区十三陵的1.44倍和1.26倍;冬季有机物污染最严重,分别为春季的1.15、 1.82倍,秋季的2.06、 2.26倍,夏季的4.53、 6.26倍.不同季节PM2.5与PM10中EOM的比值超过0.60, 并呈现一定季节差异.各功能区有机污染表现出工业区(商业区)>居民区(交通区、对照区)的变化趋势,且不同功能区PM2.5中EOM对PM10中EOM的影响程度各异.有机组分的年均值有非烃>沥青质>芳烃>饱和烃的变化规律,而污染源的季节性排放是造成有机物组分季节变化的主要原因.  相似文献   

10.
选取7台中小燃煤锅炉,分析其排放的烟气中PM2.5的排放因子、成分谱特征和除尘设施对不同粒径段的PM2.5、OC、EC的去除效率.研究发现:除尘设施出口处的PM2.5质量排放因子在0.047~0.283 g·kg-1之间,平均为(0.146±0.081)g·kg-1.SO42-在离子组分中的含量最为丰富,其次为NH4+和Ca2+;S在元素组分中的含量最为丰富,其次为Al、Ca、Fe;OC、EC的含量波动幅度较大,各锅炉产生的OC和EC比值均大于1.在所测粒径的范围内,PM2.5的质量浓度呈单峰或双峰分布,峰值点出现在0.07~0.12 μm处和1 μm以上(双峰时);OC的粒径分布呈双峰或三峰的特征,峰值点分别出现在0.04 μm和0.20~0.31 μm处和1 μm以上(三峰时).除尘设施对PM2.5、OC、EC质量浓度的整体去除效率分别为66%、53%和23%.  相似文献   

11.
农作物秸秆燃烧PM2.5排放因子的研究   总被引:16,自引:2,他引:14  
农作物秸秆燃烧是一类重要的生物质燃烧形式,已是大气细粒子的来源之一.建立了实验室模拟-稀释通道采样系统,并利用这一系统测定了浙江、四川、河南、河北、北京(主要粮食产区)五地的玉米、小麦和水稻秸秆燃烧过程中PM2.5的排放因子.结果表明:实验室模拟明火燃烧的w(PM2.5)为7.2~39.0 g/kg,与文献[5],[7]~[8]中野外燃烧结果相似,表明两者燃烧状态具有相似性;排放因子受秸秆燃烧状态影响显著,闷火燃烧为明火燃烧的2.4~11.5倍;同时,农作物种类不同PM2.5排放因子也存在明显差别;而排放因子随秸秆生长地域变化比较小.   相似文献   

12.
燃煤工业锅炉可吸入颗粒物的排放特征   总被引:8,自引:5,他引:8  
利用基于荷电低压捕集器(ELPI)的颗粒物排放稀释采样系统,在8个燃煤工业锅炉的除尘器进、出口进行了烟气可吸入颗粒物(PM10)和细微颗粒物(PM2.5)的现场测试. 粒径分布结果表明,在所测粒径范围(0.03~10 μm)内,燃煤工业锅炉产生和排放PM10的粒数浓度和质量浓度均出现1个峰值,峰值粒径大约在0.12~0.20 μm范围内. PM2.5中碳组分和硫酸盐的含量较高,其中有机碳(OC)和元素碳(EC)含量分别为3.7%~21.4%和4.2%~24.6%,硫酸盐含量则在1.5%~55.2%之间. 在无控条件下,燃用原煤的层燃炉的PM10和PM2.5排放因子分别为0.13~0.65 kg·t-1和0.08~0.49 kg·t-1,燃用型煤的链条炉分别为0.24 kg·t-1和0.22 kg·t-1,而循环流化床的PM2.5排放因子为1.14 kg·t-1,明显高于链条炉. 由于耗煤量大,同时现有除尘设备的效率较低,燃煤工业锅炉可能成为我国最重要的PM10排放源,是今后重点控制的对象.  相似文献   

13.
我国工程机械排放控制起步较晚.为研究实际工况下工程机械的PM2.5排放特性及其碳质组分构成,采用便携式颗粒物稀释采样系统,对3台工程机械(2台挖掘机和1台装载机)在不同典型工况(行驶、作业和怠速)下的PM2.5及其碳质组分〔OC(有机碳)和EC(元素碳)〕的现场排放特征进行了测试.结果表明:沃尔沃挖掘机、山河智能挖掘机的PM2.5排放因子(基于燃油)分别为1.85~3.26和1.56~2.62 g/kg,厦工装载机的PM2.5排放因子为0.98~1.48 g/kg.不同工况对PM2.5排放因子影响较大,怠速工况下PM2.5排放因子是行驶工况下的1.49~1.76倍.工程机械排放的PM2.5中,碳质组分是最主要的成分,其质量分数高达71.0%~84.5%.其中,w(OC)为44.6%~72.0%,在怠速工况下最高;w(EC)则为8.6%~30.9%,在行驶工况下较高.测试工程机械的PM2.5排放水平较高,因此应尽快加强工程机械排放的污染防治.  相似文献   

14.
安阳市典型工业源PM2.5排放特征及减排潜力估算   总被引:1,自引:0,他引:1  
为探究安阳市PM_(2. 5)排放特征,通过现场调查对安阳市工业源活动水平和控制技术信息进行收集,采用合理的估算方法、排放因子,建立了安阳市2016年工业源PM_(2. 5)排放清单,并利用地理信息系统(GIS)技术进行空间分配.基于典型行业超低排放改造和煤炭压减要求设置3种情景,估算了2020年安阳市工业源PM_(2. 5)减排潜力.结果表明,安阳市2016年工业源PM_(2. 5)排放总量为81 071. 13 t;有色冶金、钢铁和建材行业是安阳市PM_(2. 5)主要贡献源,分别占总排放量的45. 43%、25. 74%和18. 00%;安阳市各乡镇排放差异突出,PM_(2. 5)排放主要集中在市区及林州市和安阳县,且以安阳市区排放量最为突出,而安阳市区的4个辖区的排放强度差异更为巨大;通过设定不同控制情景,估算2020年安阳市PM_(2. 5)减排潜力分别为398. 72、11 623. 87和14 072. 27 t,分别占2016年工业源排放总量的0. 49%、14. 34%和17. 22%.可见,安阳市PM_(2. 5)具有较大减排潜力,超低排放改造和煤炭压减对安阳市PM_(2. 5)减排具有重要意义.  相似文献   

15.
为获得水泥企业固定源颗粒物排放特性,采用自设固定源PM2.5稀释采集系统对陕西省关中地区某水泥企业固定源中的细颗粒物开展了现场实测工作.结果表明:窑头主要排放粒径较小的颗粒物,其粒径分布特征与燃烧气态产物冷凝、碰并、凝聚等机制相关;窑尾、煤磨、破碎、水泥磨主要排放粒径较大的颗粒物,其粒径分布特征与原料、燃料及熟料的破碎、粉磨等物理性质相关;考虑废气标干流量情况下,固定源PM2.5控制重点依次为窑头、煤磨、窑尾、水泥磨、破碎;窑头在爱根核模态和积聚模态的颗粒物浓度整体水平明显高于窑尾、煤磨、破碎(最高值间约相差3倍左右至1个数量级);窑头、窑尾、煤磨、破碎浓度分布的共同特征是PM10粒径分布谱中大于0.1 μm的各层级颗粒物质量大多较高且各层级间质量变化较为剧烈.窑头在爱根核模态和积聚模态的颗粒物数浓度整体水平明显高于窑尾、煤磨、破碎(最高值间约相差1~2个数量级);窑头、窑尾、煤磨、破碎数浓度分布的共同特征是PM10粒径分布谱中粗粒子模态数量均很小.窑尾、窑头、煤磨、破碎、水泥磨排放因子分别为0.156 g/t(以熟料计)、3.914 g/t(以熟料计)、1.538 g/t(以煤计)、0.016 g/t(以石料计)、0.056 g/t(以水泥计),PM2.5排放总量分别为207.48、5 205.62、286.38、28.73、131.50 t,固定源PM2.5排放总量为5 859.7 t.研究显示,水泥企业不同固定源颗粒物排放特性相差较大,即使同一类工艺同一性质固定源其颗粒物排放也存在不同,主要原因在于各企业的运行参数、固定源除尘设施、颗粒物检测方法及仪器等存在不同.   相似文献   

16.
运用自主设计的生物质燃烧系统,对水稻、小麦、大豆、玉米、花生和油菜6种农作物秸秆采用不同燃烧状态(阴燃和明燃)进行实验室模拟燃烧,分析PM_(2.5)的排放因子及其碳质组分和水溶性离子之间的差异.研究结果表明,不同燃烧状态对秸秆PM_(2.5)的排放因子、碳质组分和水溶性离子的排放均具有显著影响.不同农作物秸秆PM_(2.5)排放因子范围在阴燃和明燃时分别是11.45~23.84 g·kg~(-1)和4.51~12.15 g·kg~(-1).有机碳(OC)、元素碳(EC)的排放因子范围阴燃时分别是5.03~11.04 g·kg~(-1)和0.94~2.70 g·kg~(-1),明燃时分别是1.55~6.02 g·kg~(-1)·kg~(-1)和1.04~2.11 g·kg~(-1),阴明燃具有显著差异且阴燃高于明燃.此外,OC/EC、OC/PM_(2.5)和EC/PM_(2.5)在不同燃烧状态均具有显著差别,可作为区分阴明燃的指标.PM_(2.5)中水溶性离子的主要组分阴燃时为K+(1.011 g·kg~(-1))、Cl~-(0.712 g·kg~(-1))、F~-(0.182 g·kg~(-1)g)和SO_4~(2-)(0.166 g·kg~(-1)),明燃时为K+(0.457 g·kg~(-1))、Cl~-(0.271 g·kg~(-1))、SO_4~(2-)(0.086 g·kg~(-1))和F~-(0.048 g·kg~(-1)),且阴燃条件更有利于离子的排放.此外,水溶性离子的相关性也因燃烧状态的不同而有较大的差异.  相似文献   

17.
为探究典型藻类生物质燃烧过程中微细颗粒物PM_(2.5)的排放特性及机制,采用一维管式炉对藻类生物质小球藻、条浒苔和马尾藻在不同燃烧温度下的PM_(2.5)排放浓度进行实验研究.结果表明,PM_(2.5)的排放特性随藻种而异且与燃烧温度密切相关.小球藻的PM_(2.5)排放浓度随燃烧温度的升高而降低,600℃时的峰值浓度为138.667 mg·m~(-3).与之不同的是,条浒苔和马尾藻的PM_(2.5)排放浓度在单峰时随温度的升高而降低,双峰时随着温度的升高而升高,600℃时峰值最高分别为24.733 mg·m~(-3)和3.757 mg·m~(-3),当温度从700℃升至900℃时3藻种的峰值时间提前,然而,小球藻峰值降低,条浒苔和马尾藻峰值均增加.在此基础上,对PM_(2.5)的产量进行了分析,并根据各自的排放特性对其排放机制进行了分析.研究认为,高含量挥发分及碳氢化合物可能是小球藻微细颗粒物形成的主要来源.在高温状态下,条浒苔和马尾藻由于挥发分的快速释放和焦炭颗粒的膨胀导致孔隙扩张.  相似文献   

18.
林香男  董娴  陈卓 《地球与环境》2019,47(3):254-260
2015年9月至2016年8月在贵阳市区设置4个采样点位采集PM_(2.5)样品,分别采用原子吸收分光光度计、原子荧光光度计和汞分析仪测定PM_(2.5)中8种致癌有害元素的质量浓度,研究其时空变化特征、富集程度及季节变化规律,并运用富集因子法对其可能来源进行解析。结果表明,Pb、Cr(Ⅵ)、As、Cd和Hg 5种致癌有害元素标准化后的浓度大小排列顺序可能为Cr(Ⅵ)AsHgCdPb,其中As、Cr年均值浓度超过我国《环境空气质量标准》。除Co外,其它7种致癌有害元素的富集因子EF10,且Cd、Hg、Pb和Se 4种元素有显著富集,可能主要来源于燃煤和机动车尾气的排放,冬季富集因子高于其它季节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号