首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
土壤石油烃污染的植物毒性及植物-微生物联合降解   总被引:8,自引:2,他引:6  
通过盆栽实验研究了土壤石油烃污染对玉米和水稻根伸长的影响,并在土壤中接种经过筛选得到的石油烃降解菌,研究石油烃降解菌对石油烃毒性的影响以及对土壤中石油烃的降解。研究结果表明,石油烃浓度低于1 000 mg/kg时对玉米的根系生长有一定的刺激生长作用,随着石油烃浓度的增加,刺激根长生长的作用逐渐降低,研究结果表明,水稻根长受石油烃影响较小。通过对不同处理土壤中石油烃降解的研究结果表明,土壤中种植水稻对石油烃有一定的降解作用,但是不同处理下土壤中的石油烃降解率不同,其中水稻微生物联合处理下土壤中石油烃的降解速率最快,培养期内的降解效率达到53.3%。  相似文献   

2.
在温室盆栽条件下,通过单独种植紫茉莉、单独接种多环芳烃(PAHs)模式化合物芘的专性降解菌ZQ5和两者的联合修复的3种处理,对芘污染土壤的修复效果进行了研究。结果表明,经90 d修复后,植物-微生物联合修复可将人工污染土壤中的芘降解81.1%,将石油污染土壤中的芘降解50.3%,其修复效率明显高于其他2种处理,是紫茉莉修复的1.98倍,是降解菌ZQ5修复的1.39倍。ZQ5的不同接菌量对于修复60 d后的降解率影响不大。外源生物修复条件下,10~20 cm土壤的修复效率要高于5 cm土壤;自然降解条件下,5 cm土层降解率略高于其他土层。  相似文献   

3.
不同处理条件对石油污染土壤植物修复的影响   总被引:4,自引:0,他引:4  
针对石油烃植物修复过程中的主要影响因素,研究了不同植物种类、不同土壤调理剂和菌剂使用等不同条件对土壤中石油烃植物修复效果的影响.结果表明,不同种类的植物修复可使总石油烃的年降解率达到37.8% ~ 73.98%,其中大豆和碱蓬具有较好的修复效果;3种不同土壤调理剂对石油烃污染土壤修复的效果为商业添加剂>牛粪>蛭石;先微生物修复后种植植物的处理要优于单独的微生物修复及微生物、植物修复同步进行的处理.  相似文献   

4.
通过添加海藻酸钠包埋菌剂、缓释肥料,并辅以通风工艺及浇水设备建立了修复石油污染土壤的生态堆,对胜利油田一处油泥暂存点的石油污染土壤进行了生态堆修复。修复结果显示:生态堆能高效修复污染土及油泥中的石油烃,一年后,C6~C16的脂肪烃降解至检出限以下,C17~C36的脂肪烃一年内降解率为93.5%,总PAHs的降解率能达到78%以上,但随着PAHs苯环数的增加,降解率呈下降趋势;缓释肥料及包埋菌剂的添加,以及生态堆顶部植物的种植,使生态堆内的环境条件保持较为稳定的状态,为石油烃的降解创造良好的条件。  相似文献   

5.
对二氯苯污染土壤的植物修复研究   总被引:2,自引:0,他引:2  
采用种植物的方法.对以对二氯苯(PDCB)为代表的多氯代有机污染物(PCOPs)污染土壤的植物修复进行了研究.以黑麦草、紫花苜蓿和大蒜作为供试植物.在PDCB为1 856μg/kg的污染土壤中种植90 d,研究了不同植物条件下土壤中PDCB的降解情况.结果表明,与空白对照相比.种植物大大提高了土壤中微生物的数量和酶的活性.试验结束后,种植黑麦草、紫花苜蓿和大蒜后,PDCB分别降低82.44%、62.82%和59.59%.种植黑麦草时PDCB降解最快,对PDCB污染土壤修复的效果最好.  相似文献   

6.
人为制作芘(Pyr)和苯并[a]芘(Ba P)浓度分别为200 mg·kg~(-1)、100 mg·kg~(-1)的污染土样,通过羟丙基-β-环糊精(HPCD)和芘的降解菌,研究土壤中Pyr和Ba P的修复效果及对微生物群落结构的变化。通过添加10%(w/w)HPCD和5%(v/w)降解菌修复人为污染的土壤,研究发现添加HPCD和降解菌对两种多环芳烃的降解均有促进作用,且同时添加的效果依次强于单独添加HPCD、单独添加降解菌。培养14周后,和对照相比,所有处理的土样中3种酶(脱氢酶、多酚氧化酶以及荧光素二乙酸酯酶)活性均增强,且HPCD+降解菌处理效果使酶活性增强最为显著,与样品的降解效果趋势相似。通过对土壤中2种多环芳烃进行Tenax TA 6 h提取来表征生物有效性,得出土壤中Pyr的生物有效性依次为HPCD处理(M)对照处理(CK)(HPCD+降解菌)处理(MB)■降解菌处理(CKB);即HPCD可以显著增强土壤中Pyr的生物有效性,MB和CKB对土壤中Pyr的生物有效性具有减弱作用,且CKB处理的减弱效果最明显;Ba P的生物有效性依次为HPCD处理(M)■(HPCD+降解菌)处理(MB)对照处理(CK)降解菌处理(CKB);即不仅HPCD对土壤中Ba P的生物有效性增强作用,MB对Ba P的生物有效性也具有增强作用,而且CKB对土壤中Ba P的生物有效性同样具有减弱作用。高通量测序表明,培养10周后,M、MB、CK和CKB 4种样品的土壤细菌组成相似。外接种菌液会提高土壤中的细菌多样性,环糊精的添加会降低土样的细菌多样性,两者都会改变土壤的细菌群落结构。  相似文献   

7.
石油烃(TPHs)在土壤中难以降解,并具有生物毒性,异位热脱附(ESTD)在修复石油烃污染土壤方面极具应用潜力。采用实验室模拟异位热脱附装置,研究了热脱附载气含氧量及土壤石油烃污染浓度对可萃取石油烃(EPHs)中柴油段(DRO)和重油段(ORO)的5种组分去除率的影响。结果表明:在初始浓度为5 000~20 000mg·kg~(-1)时,在20 min内的脱附率均不超过50%;当初始浓度增加到40 000 mg·kg~(-1)、脱附时间为20 min时脱附率可以达到68.2%。热脱附时间为50 min时,40 000 mg·kg~(-1)污染土壤的残余浓度为407.1 mg·kg~(-1)。DOR组分相同时间的脱附率随污染浓度的升高而升高,ORO组分在50 min之内不能完全脱附,脱附率随着污染物浓度上升会出现先增大后减小的趋势。在250℃时,DRO中3个组分的去除率均随着气氛含氧量的增加而呈现明显的增长趋势。在400℃条件下,ORO中2个组分分别在含氧量为12%和15%时达到最高的去除率。本研究结果可为ESTD技术修复不同浓度的石油烃污染土壤的工程设计参数提供参考。  相似文献   

8.
石油降解菌的筛选优化及其对油污土壤的修复特性   总被引:3,自引:0,他引:3  
分别以牛肉膏蛋白胨-布氏哈斯培养基、蓝色凝胶培养基作为初筛和复筛培养基,从石油污染土壤中筛选出2株可产生微生物表面活性剂的石油烃降解菌。并将菌株投加到油污土壤中进行修复研究,考查了不同影响因素对修复效果的影响。研究结果表明,(1)2株菌对中度石油污染土壤有较好的修复效果,向油污土壤中直接投加菌株修复70 d时对石油烃的去除率为52%;(2)向油污土壤中投加降解菌并同时补充氮营养液,修复70 d时对土壤中总石油烃的去除率可达到75%;对土壤中正构烷烃的去除率为66%;(3)与土壤的含水率及土著菌的降解效果相比,向油污土壤中投加降解菌以及补充氮磷营养液是影响石油污染土壤修复效果的关键因素。  相似文献   

9.
代谢表面活性剂菌处理含油污泥的研究   总被引:6,自引:0,他引:6  
试验采用异位生物修复技术堆肥法,对某炼厂油泥进行生物修复处理研究.用微生物代谢的表面活性剂对油泥进行预处理,洗脱油泥中部分油分后进行堆肥试验,投加从油田含油土壤中获得的以石油为唯一碳源、代谢高效生物表面活性剂的微生物C-2菌、F-2菌以及无机营养物和疏松剂(锯末),降解油泥中的石油污染物.经过外源微生物和内源微生物共同作用120 d,油泥中的石油烃总量由22 910 mg/kg下降到3 000 mg/kg以下.试验利用色谱-质谱联用方法分析了降解前后石油组分的变化.菌株经传统方法鉴定为蜡状芽孢杆菌、枯草芽孢杆菌.  相似文献   

10.
植物-微生物联合修复石油污染土壤的实验研究   总被引:1,自引:0,他引:1  
筛选高效石油降解菌并考察菌株的石油降解能力,通过植物-微生物联合修复石油污染土壤室内实验,在修复过程中测定了土壤中细菌和固氮菌,碱解氮、速效磷和速效钾的含量变化,同时采用傅立叶变换离子回旋共振质谱(ESI FT-ICR MS)考察了植物-微生物联合修复效果。结果表明,菌株3#、4#的生长适应性较强,其混合菌的降解效果最好,将其混合菌液与植物进行植物-微生物联合修复不同浓度的石油污染土壤,经过150 d的温室降解,最高降解率达到73.47%。ESI FT-ICR MS分析结果表明,与空白组相比,植物组的O1、O2和N1类等化合物相对丰度都发生了显著变化,石油污染物得到一定程度的生物降解。  相似文献   

11.
中原油田石油污染土壤原位生物修复技术实验研究   总被引:2,自引:1,他引:1  
通过实验室选择性富集培养,从中原油田石油污染土壤中获得了能以中原原油为碳源快速生长的石油降解菌群。结合黑麦草(Ryegrass)和苜蓿(Alfalfa),采用该降解菌群对原油污染土壤进行了原位生物联合修复实验。接入降解菌的实验区分种植黑麦草、种植苜蓿、未种植区,另设黑麦草区和空白区。经过99 d的生物修复,石油烃累计降...  相似文献   

12.
为降低城市污泥堆肥中有机氯农药对环境的影响,实验室通过外加热源提供堆肥环境温度条件,并在不同堆料中接种不同剂量的产漆酶血红密孔菌,研究不同处理下产漆酶血红密孔菌对污泥中HCH、DDT和HCB的降解性能的影响。结果表明,供试血红密孔菌对3种有机氯农药的降解有明显的促进作用。未接种菌剂情况下,高温堆肥本身对HCH、DDT和HCB的降解率分别为51.1%、43.6%和63.4%;接种1%菌剂时,HCH、DDT和HCB比未接种堆料降解率分别提高了16.2%、34.6%和21.7%;接种3%菌剂时,HCH、DDT和HCB比未接种堆料降解率分别提高了41.1%、34.6%和20.1%。供试菌剂对DDT的降解效果最好,且DDT和HCH的降解能力与接种量大小呈正相关。此外,供试菌剂剂量大小对HCH不同异构体和DDT不同衍生物降解效果也不尽相同。  相似文献   

13.
石油烃对翅碱蓬生理特性的影响及植物-微生物联合降解   总被引:1,自引:0,他引:1  
通过盆栽实验,测定在低浓度石油烃浓度下翅碱蓬的生长生理指标及沉积物和翅碱蓬中石油烃含量的变化,研究石油烃对翅碱蓬生理特性和抗氧化酶系统的影响及植物-微生物联合修复效果。结果表明,翅碱蓬抗氧化酶能够快速提高活性来抵御逆境,植株还可通过增加其叶绿素含量等来适应或补偿逆境造成的损失。同时还发现,当植物处于石油烃污染沉积物时,它体内污染物的分布会与自然情况下有所不同,自然情况下分布为茎>叶>根,受污染时分布为根>茎>叶,该结果可以作为判断沉积物是否受到污染的依据。实验的不同处理(加植物加菌组、只加菌未种植物组、种植物未加菌组)去除率分别为70.87%、63.66%和60.26%,翅碱蓬-降解菌处理的沉积物中石油烃残留浓度最低、去除量最高,表明植物-微生物联合作用更有利于石油烃污染沉积物的修复。  相似文献   

14.
生物强化修复石油污染土壤   总被引:2,自引:0,他引:2  
筛选高效石油降解菌,考察菌株的降解性能及降解机理,进行花盆模拟高效外源菌强化修复石油污染土壤实验,在降解后期添加激活剂H2O2以及木屑来试图改善微生物的修复环境,减缓微生物的衰亡,并考察修复效果。结果表明,菌株L-1的降解效果较好,其对pH和温度有较大范围的适应性,能分泌较多的表面活性物质,细胞疏水性较强。将其应用于土壤修复中,经过50 d的修复,石油残留率达到50.6%左右,生物强化比自然修复残留率降低了8%左右。在第45天添加激活剂能有效改善修复效果,70 d时添加外源菌的土样最小石油残留率达到37.9%。  相似文献   

15.
植物混种原位修复多环芳烃污染农田土壤   总被引:2,自引:1,他引:1  
通过比较实验前后土壤微生物主要类群数量、PAHs降解菌数量、土壤PAHs含量和植物不同部位PAHs含量变化,评价植物单种和混种野外原位修复多环芳烃(PAHs)污染农田土壤的效果。结果显示,150 d天生长期内,黑麦草/小麦混种及黑麦草/蚕豆混种修复效果最好,对土壤PAHs总量的降解率分别达到了59.4%和64.8%。同时,这2个混种处理土壤细菌、真菌和PAHs降解菌数量分别显著高于相应的小麦、蚕豆和黑麦草单种处理。植物不同部位PAHs含量高低次序为根部>茎叶≈籽粒。混种模式下,蚕豆和小麦不同部位PAHs含量比单种模式的不同程度降低,特别是籽粒部。植物混种模式不仅显著提高了土壤PAHs的降解率,还降低了农作物体内PAHs含量,实现了边生产边修复,在污染农田土壤修复领域有着广阔的应用前景。  相似文献   

16.
为了探究堆置法处理油污土壤的作用效果,采用单因素实验确定石油初始浓度、温度、土壤含水量、有机质含量、土壤C/N、菌剂浓度相关因素的水平取值范围。以石油烃降解率为评价指标,再通过正交实验进一步优化相关参数,确定最佳条件。结果表明:以石油初始浓度2%、温度35℃、土壤C/N 10∶1为控制变量;以菌剂浓度(X)、有机质含量(Y)、土壤含水量(Z)为变化因素设计正交实验组合L9(34)。可以得出,堆置法处理油污土壤的最佳水平组合为X2Y2Z3,即菌剂浓度5×109cfu·kg~(-1),有机质含量为5%,土壤含水量为60%。  相似文献   

17.
通过富集和驯化培养从石油污染的土样中筛选出一株高效石油烃降解菌Y-16,其对胜利原油7 d降解率达到51.98%。在好氧条件下,对Y-16菌株的最优降解条件进行了探索,结果表明,在pH值8.0,温度30℃,接种量10%,摇床转数160 r/m in和3 000~7 000 mg/L的底物浓度下,Y-16菌株的最高降解率可达到60.34%。通过Y-16菌株对石油烃降解规律的探索,发现Y-16菌株对石油烃的降解符合一级反应动力学模型。  相似文献   

18.
采用16SrDNA技术对石油污染场地筛选出的两种单菌(A6菌和A10菌)进行鉴定,并对两种单菌及其混合菌降解石油烃各组分的效果进行了研究。结果表明,两种单菌分别为假单胞菌(Pseudomonas sp.)和无色杆菌(Achromobacter sp.)。两种单菌及其混合菌对石油烃的降解有所差异,其降解效果依次为混合菌A6菌A10菌。其中A6菌和A10菌对石油烃底物降解的组分大致相同,两者均能完全降解大部分直链烷烃、环烷烃和支链烷烃,部分降解C9~C27正构烷烃。从降解程度来看,A6菌优于A10菌。两种单菌的混合菌在降解石油烃底物时,具有协同降解作用,对石油烃底物降解的组分及降解程度均优于两种单菌;混合菌除了能完全降解大部分直链烷烃、环烷烃和支链烷烃外,还对A6菌和A10菌不能彻底降解的支链烷烃(3,8-二甲基癸烷和2-甲基-十二烷)完全降解。  相似文献   

19.
利用不同组分原油逐级驯化的方法对克拉玛依油田的石油污染土样进行石油烃降解混菌的富集驯化,得到一组对稀油和稠油均具有高效降解能力的混菌M3。与采用单一原油驯化方法相比,混菌M3对稀油和稠油的降解率分别提高了12.5%和22%。该混菌具有较强的产表面活性剂的能力,能够使发酵液的表面张力从69.8 mN·m~(-1)降至27.9 mN·m~(-1)。通过混菌M3的生长条件优化实验得出:在温度30℃、pH 7~8、盐度1%、氮源选择尿素的条件下,混菌M3对原油的降解率最高。通过考察混菌M3在污染土壤中对原油的降解效果,发现:在修复期间,土壤脱氢酶呈先升高后降低的趋势;混菌M3可使饱和烃组分增加,并使芳香分、胶质和沥青质组分降低,对重质组分具有较好的降解效果。混菌M3的加入改变了原油性质,促进了土壤中原油的降解,经过56 d修复,土壤中原油降解率达到55.3%。  相似文献   

20.
利用苯酚诱导获得厌氧菌群JAC1强化去除土壤中的石油烃,对其在厌氧条件下的石油烃降解条件进行了优化,得到最适降解条件为:pH 7.5~8.5,土壤总石油烃(TPH)质量浓度50 mg/kg, NaCl质量分数0.3%,JAC1接菌量0.15 mL/g。厌氧菌群JAC1对石油烃的降解符合一级动力学模型。通过气相色谱质谱联用仪分析,芳香烃较直链烷烃更难降解,推测部分长链烷烃在降解过程中会分解为短链烷烃后再进行降解。基于土壤宏基因组测序分析可知,土壤微生物群落多样性与TPH浓度呈负相关,投加JAC1后土壤中与石油烃降解有关的功能菌群相对丰度呈现出不同程度增高,说明JAC1有助于建立一个高效的微生物降解体系来强化石油烃降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号