首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combined ecological toxicity of TiO2 nanoparticles (nano-TiO2) and heavy metals has been paid more attention. As the common pollutants in water environment, surfactants could affect the properties of nanoparticles and heavy metals, and thus further influence the combined toxicity of nano-TiO2 and heavy metals. In this study, the effects of sodium dodecyl benzene sulfonate (SDBS) and Tween 80 on the single and combined toxicities of Cd2 + and nano-TiO2 to Escherichia coli (E. coli) were examined, and the underlying influence mechanism was further discussed. The results showed both SDBS and Tween 80 enhanced the toxicity of Cd2 + to E. coli in varying degrees. The reaction of SDBS and Cd2 + could increase the outer membrane permeability and the bioavailability of Cd, while Tween 80 itself could enhance the outer membrane permeability. The combined toxicity of nano-TiO2 and Cd2 + to E. coli in absence of surfactant was antagonistic because of the adsorption of Cd2 + to nano-TiO2 particles. However, in the presence of SDBS, both SDBS and nano-TiO2 influenced the toxicity of Cd2 +, and also SDBS could adsorb to nano-TiO2 by binding to Cd2 +. The combined toxicity was reduced at Cd2 + lower than 4 mg/L and enhanced at Cd2 + higher than 4 mg/L under multiple interactions. Tween 80 enhanced the combined toxicity of nano-TiO2 and Cd2 + by increasing the outer membrane permeability. Our study firstly elucidated the effects of surfactants on the combined toxicity of nano-TiO2 and Cd2 + to bacteria, and the underlying influencing mechanism was proposed.  相似文献   

2.
Tropospheric ozone(O_3) is a major air pollutant and causes serious injury to vegetation. To protect sensitive plants from O_3 damage, several agrochemicals have been assessed,including cytokinin(e.g., kinetin, KIN) and ethylenediurea(EDU) with cytokinin-like activity.In higher plant, leaves are primarily injured by O_3 and protective agrochemicals are often applied by leaf spraying. To our knowledge, the mitigating abilities of EDU and KIN have not been compared directly in a realistic setup. In the present research, impacts of elevated O3(2 × ambient O_3, 24 hr per day, for 8 days) on an O_3 sensitive line(S156) of snap bean(Phaseolus vulgaris), which is often used for biomonitoring O_3 pollution, were studied in a free air controlled exposure system. The day before starting the O_3 exposure, plants were sprayed with a solution of EDU(300 ppm), KIN(1 mmol/L) or distilled water, to compare their protective abilities. The results demonstrated that 2 × ambient O_3 inhibited net photosynthetic rate and stomatal conductance, increased the minimal fluorescence yield of the dark-adapted state, decreased the maximal quantum yield of PSII photochemistry, and led to visible injury. KIN and EDU alleviated the reduction of the photosynthetic performance, and visible injury under O_3 fumigation. The plants sprayed with EDU showed greater ability to mitigate the O_3 damage than those sprayed with KIN. Chlorophyll fluorescence imaging may have detected more precisely the differences in O_3 response across the leaf than the conventional fluorometer.  相似文献   

3.
The present investigation deals with an application of integrated sequential oxic and anoxic bioreactor(SOABR) and fluidized immobilized cell carbon oxidation(FICCO) reactor for the treatment of domestic wastewater with minimum sludge generation. The performance of integrated SOABR-FICCO system was evaluated on treating the domestic wastewater at hydraulic retention time(HRT) of 3 hr and 6 hr for 120 days at organic loading rate(OLR)of 191 ± 31 mg/(L·hr). The influent wastewater was characterized by chemical oxygen demand(COD) 573 ± 93 mg/L; biochemical oxygen demand(BOD5) 197 ± 35 mg/L and total suspended solids(TSS) 450 ± 136 mg/L. The integrated SOABR-FICCO reactors have established a significant removal of COD by 94% ± 1%, BOD5 by 95% ± 0.6% and TSS by 95% ± 4% with treated domestic wastewater characteristics COD 33 ± 5 mg/L; BOD59 ± 0.8 mg/L and TSS 17 ± 9 mg/L under continuous mode of operation for 120 days. The mass of dry sludge generated from SOABR-FICCO system was 22.9 g/m~3. The sludge volume index of sludge formed in the SOABR reactor was 32 mL/g and in FICCO reactor it was 46 mL/g. The sludge formed in SOABR and FICCO reactor was characterized by TGA, DSC and SEM analysis. Overall, the results demonstrated that the integrated SOABR-FICCO reactors substantially removed the pollution parameters from domestic wastewater with minimum sludge production.  相似文献   

4.
To investigate the effect of air-exposed biocathode(AEB) on the performance of singlechamber microbial fuel cell(SCMFC), wastewater quality, bioelectrochemical characteristics and the electrode biofilms were researched. It was demonstrated that exposing the biocathode to air was beneficial to nitrogen removal and current generation. In Test 1 of 95%AEB, removal rates of ammonia, total nitrogen(TN) and chemical oxygen demand(COD)reached 99.34% ± 0.11%, 99.34% ± 0.10% and 90.79% ± 0.12%, respectively. The nitrogen removal loading rates were 36.38 g N/m~3/day. Meanwhile, current density and power density obtained at 0.7 A/m3 and 104 m W/m~3 respectively. Further experiments on opencircuit(Test 2) and carbon source(Test 3) indicated that this high performance could be attributed to simultaneous biological nitrification/denitrification and aerobic denitrification, as well as bioelectrochemical denitrification. Results of community analysis demonstrated that both microbial community structures on the surface of the cathode and in the liquid of the chamber were different. The percentage of Thauera, identified as denitrifying bacteria, maintained at a high level of over 50% in water, but decreased gradually in the AEB. Moreover, the genus Nitrosomonas, Alishewanella, Arcobacter and Rheinheimera were significantly enriched in the AEB, which might contribute to both enhancement of nitrogen removal and electricity generation.  相似文献   

5.
The effects of O_3/Cl_2 disinfection on corrosion and the growth of opportunistic pathogens in drinking water distribution systems were studied using annular reactors(ARs).The corrosion process and most probable number(MPN) analysis indicated that the higher content of iron-oxidizing bacteria and iron-reducing bacteria in biofilms of the AR treated with O_3/Cl_2 induced higher Fe_3O_4 formation in corrosion scales.These corrosion scales became more stable than the ones that formed in the AR treated with Cl_2 alone.O_3/Cl_2 disinfection inhibited corrosion and iron release efficiently by changing the content of corrosion-related bacteria.Moreover,ozone disinfection inactivated or damaged the opportunistic pathogens due to its strong oxidizing properties.The damaged bacteria resulting from initial ozone treatment were inactivated by the subsequent chlorine disinfection.Compared with the AR treated with Cl_2 alone,the opportunistic pathogens M.avium and L.pneumophila were not detectable in effluents of the AR treated with O_3/Cl_2,and decreased to(4.60 ± 0.14) and(3.09 ± 0.12) log10(gene copies/g corrosion scales) in biofilms,respectively.The amoeba counts were also lower in the AR treated with O_3/Cl_2.Therefore,O_3/C_l2 disinfection can effectively control opportunistic pathogens in effluents and biofilms of an AR used as a model for a drinking water distribution system.  相似文献   

6.
This paper evaluates the use of a nickel nanoparticle (NiNP) interlayer for making hermetic joints in 316L stainless steel substrates via diffusion brazing. Different NiNP inks were prepared using commercial nanopowder (~9 nm) and in-house synthesized nanoparticles. Syringe pump deposition of ~9 nm NiNP ink and diffusion brazing at 900 °C for 30 min under 2 MPa resulted in a hermetic joint up to the tested pressure of 70 psi. In-house synthesis of NiNPs was carried out in ethylene glycol by the reduction of NiCl2·6H2O in the presence of hydrazine (N2H4) as a reducing agent. X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) results confirm the presence of pure fcc-Ni with an average particle size of 5.4 ± 0.9 nm. An as-synthesized suspension of NiNPs was patterned onto 316L stainless steel laminae via automated dispensing to a thickness of ~3 μm and bonded at 800 °C for 30 min at a pressure of 2 MPa. The diffusion-brazed test article was also found to be hermetic up to 70 psi. An examination of the bond line using scanning electron microscopy (SEM) showed good uniformity and continuity.  相似文献   

7.
Coexisting arsenic (As) and antimony (Sb) in mining wastewater is a common and great concern. On-site simultaneous removal of As and Sb from mining wastewater was achieved by using a reusable granular TiO2 column in this study. To evaluate the accuracy of the scale-up procedure, As and Sb adsorption from wastewater was studied in both large (600 g TiO2) and small columns (12 g TiO2) based on the proportional diffusivity rapid small-scale column tests (PD-RSSCTs) design. The comparable As and Sb breakthrough curves obtained from small and large columns confirmed the accuracy of the PD-RSSCT theory in the design of large-scale columns. Meanwhile, the consistent As and Sb adsorption results from batch and column experiments suggested that TiO2 adsorption for As and Sb can be predicted from bench-scale tests. Charge distribution multi-site complexation (CD-MUSIC) and one-dimensional transport modeling integrated in the PHREEQC program were performed to study the adsorption behaviors of As and Sb on the TiO2 surface. Coexisting ions, such as Ca2 +, Mg2 +, and Si4 +, play an important role in As and Sb adsorption, and the breakthrough curves were well simulated after considering the compound ion effects. The results from this study highlight the surface reactions of As and Sb on TiO2 and provide a practical way for on-site remediation of industrial wastewater.  相似文献   

8.
Great efforts have been devoted to improve the photocatalytic activity of TiO_2 in the visible light region. Rational design of the external structure and adjustment of intrinsic electronic status by impurity doping are two main effective ways to achieve this purpose. A facile onepot synthetic approach was developed to prepare C-doped hollow TiO_2 spheres, which simultaneously realized these advantages. The synthesized TiO_2 exhibits a mesoporous hollow spherical structure composed of fine nanocrystals, leading to high specific surface area(~180 m~2/g) and versatile porous texture. Carbonate-doping was achieved by a postthermal treatment at a relatively low temperature(200°C), which makes the absorption edge red-shifted to the visible region of the solar spectrum. Concomitantly, Ti~(3+) induced by C-doping also functions in improving the visible-light photocatalytic activity by reducing the band gap. There exists a synergistic effect from multiple stimulatives to enhance the photocatalytic effect of the prepared TiO_2 catalyst. It is not out of expectation that the asprepared C-doped hollow TiO_2 spheres exhibits an improved photocatalytic activity under visible light irradiation in organic pollutant degradation.  相似文献   

9.
The effect of K deactivation on V_2O_5/WO_3-TiO_2 and Ce-doped V_2O_5/WO_3-TiO_2 catalysts in the selective catalytic reduction(SCR) of NOxby NH_3 was studied.Ce-doped V_2O_5/WO_3-TiO_2 showed significantly higher resistance to K deactivation than V_2O_5/WO_3-TiO_2.Ce-doped V_2O_5/WO_3-TiO_2 with K/V = 4(molar ratio) showed 90% NOxconversion at 350°C,whereas in this case V_2O_5/WO_3-TiO_2 showed no activity.The fresh and K-poisoned V_2O_5/WO_3-TiO_2 and Ce-doped V_2O_5/WO_3-TiO_2 catalysts were investigated by means of in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS),NH_3-temperature progress decomposition(NH_3-TPD),X-ray photoelectron spectroscopy(XPS) and H2-temperature program reduction(H_2-TPR).The effect of Ce doping on the improving resistance to K of V_2O_5/WO_3-TiO_2 were discussed.  相似文献   

10.
Previous studies on environmental antibiotics resistance genes(ARGs) have focused on the pollution sources such as wastewater treatment plants, aquaculture and livestock farms,etc. Few of them had addressed this issue in a regional scale such as river catchment. Hence,the occurrence and abundances of 23 ARGs were investigated in surface water samples collected from 38 sites which located from the river source to estuary of the Beijiang River.Among them, 11 ARGs were frequently detected in this region and 5 ARGs(sul I, sul II, tet B,tet C, and tet W) were selected for their distribution pattern analysis. The abundances of the selected ARGs were higher in the upstream(8.70 × 10~6 copies/ng DNA) and downstream areas(3.17 × 10~6 copies/ng DNA) than those in the midstream areas(1.23 × 10~6 copies/ng DNA), which was positively correlated to the population density and number of pollution sources. Pollution sources of ARGs along the Beijiang River not only had a great impact on the abundances and diversity, but also on the distribution of specific ARGs in the water samples. Both sul I and sul II were likely originated from aquaculture farms and animal farms,tet W gene was possibly associated with the mining/metal melting industry and the electric waste disposal and tet C gene was commonly found in the area with multiple pollution sources.However, the abundance of tet B was not particularly related to anthropogenic impacts. These findings highlight the influence of pollution sources and density of population on the distribution and dissemination of ARGs at a regional scale.  相似文献   

11.
Rice (Oryza sativa L.) paddies are one of the major sources of atmospheric methane (CH4), a greenhouse gas. To elucidate the quantitative relationship between CH4 emission from rice paddies and temperature, 6 years data of CH4 emission from pot experiments were analyzed in terms of the sum of effective temperature (∑(T−15); T is the daily mean air temperature (°C)). The base temperature of 15 °C was adopted as the 0 °C physiological temperature for methanogens. Significant positive correlations between total CH4 emission throughout the rice growth period and ∑(T−15) were observed for pots with rice straw (RS) application at a rate of 6 g kg−1 soil, which corresponds to 6 t ha−1 (r=0.83071), and those without RS application (r=0.81871). It was confirmed that temperature is a major factor affecting the interannual variation in CH4 emission. For the 1993 and 1995 data sets that include seven and four levels of RS application, the relationship between seasonal CH4 emission and RS application rate could be expressed using linear functions (r=0.98871, 0.99671), the slopes of which were similar to each other. Based on these findings, we confirmed that the dependence of seasonal CH4 emission on both temperature and RS application rate can be described by a single linear equation.  相似文献   

12.
Aeolian dust particles arising from arid and semiarid zones are known to carry microbes by air currents. The effect of wind-borne bacteria on atmospheric bacterial population at various downwind distances from the dust source regions must be clarified, but has not yet been reported. This study monitored the bacterial abundance and community composition in outdoor aerosol samples in Beijing, China, which is close to the Asian dust source regions, and compared them with the results obtained in a distant region(Osaka, Japan).The Asian dust collected in Beijing contained(4 ± 3) × 10~4 bacterial cells/m~3, approximately~4 times higher than in Osaka. On 15 April 2015, Beijing experienced severe Asian dust events with a 1000-fold increase in bacterial abundance, relative to non-Asian dust days. Dominant bacterial phyla and classes in Asian dust collected in Beijing were Actinobacteria, Bacilli and Acidobacteria, and the bacterial community composition varied more widely than in Osaka.The bacterial community compositions differed between the Beijing and Osaka dusts, even for the same Asian dust events. These results indicated that aerosol bacterial communities nearer the dust source are more affected by eolian dust than their distant counterparts.  相似文献   

13.
There is an increasing world wide demand for energy crops and animal manures for biogas production. To meet these demands, this research project aimed at optimising anaerobic digestion of maize and dairy cattle manures. Methane production was measured for 60 days in 1 l eudiometer batch digesters at 38 °C. Manure received from dairy cows with medium milk yield that were fed a well balanced diet produced the highest specific methane yield of 166.3 Nl CH4 kg VS−1. Thirteen early to late ripening maize varieties were grown on several locations in Austria. Late ripening varieties produced more biomass than medium or early ripening varieties. On fertile locations in Austria more than 30 Mg VS ha−1 can be produced. The methane yield declined as the crop approaches full ripeness. With late ripening maize varieties, yields ranged between 312 and 365 Nl CH4 kg VS−1 (milk ripeness) and 268–286 Nl CH4 kg VS−1 (full ripeness). Silaging increased the methane yield by about 25% compared to green, non-conserved maize. Maize (Zea mays L.) is optimally harvested, when the product from specific methane yield and VS yield per hectare reaches a maximum. With early to medium ripening varieties (FAO 240–390), the optimum harvesting time is at the “end of wax ripeness”. Late ripening varieties (FAO ca. 600) may be harvested later, towards “full ripeness”. Maximum methane yield per hectare from late ripening maize varieties ranged between 7100 and 9000 Nm3 CH4 ha−1. Early and medium ripening varieties yielded 5300–8500 Nm3 CH4 ha−1 when grown in favourable regions. The highest methane yield per hectare was achieved from digestion of whole maize crops. Digestion of corns only or of corn cob mix resulted in a reduction in methane yield per hectare of 70 and 43%, respectively. From the digestion experiments a multiple linear regression equation, the Methane Energy Value Model, was derived that estimates methane production from the composition of maize. It is a helpful tool to optimise biogas production from energy crops. The Methane Energy Value Model requires further validation and refinement.  相似文献   

14.
In this study, bimetallic nanoscale zero-valent iron particles(nZVI), including copper/nanoscale zero-valent iron particles(Cu/nZVI) and nickel/nanoscale zero-valent iron particles(Ni/nZVI), were synthesized by one-step liquid-phase reduction and applied for oxytetracycline(OTC) removal. The effects of contact time and initial p H on the removal efficiency were studied. The as-prepared nanoscale particles were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Finally, the degradation mechanisms of OTC utilizing the as-prepared nanoparticles were investigated by using X-ray photoelectron spectroscopy(XPS) and mass spectrometry(MS). Cu/n ZVI presented remarkable ability for OTC degradation and removed71.44% of OTC(100 mg/L) in 4 hr, while only 62.34% and 31.05% of OTC was degraded by Ni/nZVI and nZVI respectively. XPS and MS analysis suggested that OTC was broken down to form small molecules by ·OH radicals generated from the corrosion of Fe0. Cu/nZVI and Ni/n ZVI have been proved to have potential as materials for application in OTC removal because of their significant degradation ability toward OTC.  相似文献   

15.
The greenhouse gas emissions from agricultural systems contribute significantly to the national budgets for most countries in Europe. Measurement techniques that can identify and quantify emissions are essential in order to improve the selection process of emission reduction options and to enable quantification of the effect of such options. Fast box emission measurements and mobile plume measurements were used to evaluate greenhouse gas emissions from farm sites. The box measurement technique was used to evaluate emissions from farmyard manure and several other potential source areas within the farm. Significant (up to 250 g CH4 m−2 day−1and 0.4 g N2O m−2 day−1) emissions from ditches close to stables on the farm site were found.Plume emission measurements from individual manure storages were performed at three sites. For a manure storage with 1200 m3 dairy slurry in Wageningen emission factors of 11 ± 5 g CH4 m−3 manure day−1 and 14 ± 8 mg N2O m−3 manure day−1 were obtained in February 2002.Mobile plume measurements were carried out during 4 days at distances between 30 and 300 m downwind of 20 different farms. Total farm emissions levels ranged from 14 to 95 kg CH4 day−1 for these sites. Expressed as emission per animal the levels were 0.7 ± 0.4 kg CH4 animal−1 day−1 for conventional farms. For three farms that used straw bedding for the animals1.4 ± 0.2 kg CH4 animal−1 day−1 was obtained. These factors include both respired methane and emission from manure in the stable and the outside storages.For a subset of these farms the CH4 emission was compared with monthly averaged model emission calculations using FarmGHG. This model calculates imports, exports and flows of all products through the internal chains on the farm using daily time steps. The fit of modelled versus measured data has a slope of 0.97 but r2 = 0.27. Measurements and model emission estimates agree well on average, for large farms within 30%. For small farms the differences can be up to a factor of 3. CH4 emissions during winter seem to be underestimated.  相似文献   

16.
The technique of DGT (diffusive gradients in thin films) using three diffusive gel thicknesses was applied to estimate the mobility and bioavailability of heavy metals in sediments and porewater of Lake Taihu, China. The DGT results showed significantly positive correlations between Co, Pb, Cd and Mn, and Ni and Fe concentrations in porewater. Cu and Zn showed a significantly negative correlation with Mn, due to Cu combination with carbonates and Zn derived from agricultural pollution, respectively. The rank order of average concentrations of Co, Ni and Cd at each station was DGT1.92 > DGT0.78 > DGT0.39, suggesting stronger resupply from sediments to porewater when using thicker diffusive gels. Comparing centrifugation and DGT measurements, Co, Ni and Cd are highly labile; Mn and Fe are moderately labile; and Cu, Zn and Pb are slightly labile. The variations of AVS concentrations in sediment cores indicate that metal sulfides in deeper layers are easily diffused into surface sediments.  相似文献   

17.
Close relationships among climatic factors and soil respiration (Rs) are commonly reported. However, variation in Rs across the landscape is compounded by site-specific differences that impede the development of spatially explicit models. Among factors that influence Rs, the effect of ecosystem age is poorly documented. We hypothesized that Rs increases with grassland age and tested this hypothesis in a chronosequence of tallgrass prairie reconstructions in central Iowa, U.S.A. We also assessed changes in root biomass, root ingrowth, aboveground net primary productivity (ANPP), and the strength of soil temperature and moisture in predicting Rs. We found a significant increase in total growing season Rs with prairie age (R2 = 0.79), ranging from 714 g C m?2 in the youngest reconstruction (age 4) to 939 g C m?2 in the oldest prairie (age 12). Soil temperature was a strong predictor of intra-seasonal Rs among prairies (R2 = 0.78–0.87) but mean growing season soil temperature and moisture did not relate to total Rs. The increase in Rs with age was positively correlated with root biomass (r = 0.80) and ANPP (r = 0.87) but not with root ingrowth. Our findings suggest that growing season Rs increases with tallgrass prairie age, root biomass, and ANPP during young grassland development.  相似文献   

18.
Dietary adjustments have been suggested as a means to reduce N losses from dairy systems. Differences in fertilizing value of dairy slurry as a result of dietary adjustments were evaluated in a 1-year grassland experiment and by long-term modelling. Slurry composition of non-lactating dairy cows was manipulated by feeding diets with extreme high and low levels of dietary protein and energy. C:Ntotal ratio of the produced slurries ranged from 5.1 to 11.4. To evaluate their short-term fertilizer N value, the experimental slurries (n = 8) and slurries from commercial farms with variable composition (n = 4), were slit-injected in two grassland fields on the same sandy soil series in the north of The Netherlands (53°10′N, 6°04′E), with differences in sward age and ground water level. The recently established grassland field (NEW) was characterized by lower soil OM, N and moisture contents, less herbs and more modern grass varieties compared to the older grassland field (OLD). Slurry was applied in spring (100 kg N ha−1) and after the first cut (80 kg N ha−1) while in total four cuts were harvested. Artificial fertilizer N treatments were included in the experiment to calculate the mineral fertilizer equivalent (MFE) of slurry N. The OLD field showed a higher total N uptake whereas DM yields were similar for the two fields. Average MFE of the slurries on the OLD field (47%) was lower than on the NEW field (56%), probably as a result of denitrification of slurry N during wet conditions in spring. Slurries from high crude protein diets showed a significantly higher MFE (P < 0.05) compared to low crude protein diets. No significant differences in MFE were observed between slurries from high and low energy diets. On both fields, MFE appeared to be positively related to the ammonium content (P < 0.001) and negatively to the C:Ntotal ratio of the slurry DM (P = 0.001). Simulation of the effect of long-term annual application of 180 kg N ha−1 with highest and lowest C:Ntotal ratio suggested that both slurries would lead to an increase in annual soil N mineralization. Both soil N mineralization and SOC appeared to be substantially higher in equilibrium state for the slurry with the highest C:Ntotal ratio. It is concluded that in a situation with slit-injection, the reduced first-year N availability of slurry with a high C:Ntotal ratio as observed in the grassland experiment will only be compensated for by soil N mineralization on the very long term.  相似文献   

19.
For the removal of phosphate (PO43 -) from water, an adsorbent was prepared via carbonization of sewage sludge from a wastewater treatment plant: carbonized sludge adsorbent (CSA). The mechanism of phosphate removal was determined after studying the structure and chemical properties of the CSA and its influence on phosphate removal. The results demonstrate that phosphate adsorption by the CSA can be fitted with the pseudo second-order kinetics and Langmuir isotherm models, indicating that the adsorption is single molecular layer adsorption dominated by chemical reaction. The active sites binding phosphate on the surface are composed of mineral particles containing Si/Ca/Al/Fe. The mineral containing Ca, calcite, is the main factor responsible for phosphate removal. The phosphate removal mechanism is a complex process including crystallization via the interaction between Ca2 + and PO43 -; formation of precipitates of Ca2 +, Al3 +, and PO43 -; and adsorption of PO43 - on some recalcitrant oxides composed of Si/Al/Fe.  相似文献   

20.
Nowadays, trends in wastewater treatment by zero-valent iron (ZVI) were turned to use bimetallic NZVI particles by planting another metal onto the ZVI surface to increase its reactivity. Nano size zero-valent iron/copper (NZVI/Cu0) bimetallic particles were synthesized in order to examine its toxicity effects on the wastewater microbial life, kinetics of phosphorus, ammonia stripping and the reduction of chemical oxygen demand (COD). Various concentrations of NZVI/Cu0 and operation conditions both aerobic and anaerobic were investigated and compared with pure NZVI experiment. The results showed that addition 10 mg/L of NZVI/Cu0 significantly increased the numbers of bacteria colonies under anaerobic condition, conversely it inhibited bacteria activity with the presence of oxygen. Furthermore, the impact of nanoparticles on ammonia stripping and phosphorus removal was also linked to the emitted iron ions electrons. It was found that dosing high concentration of bimetallic NZVI/Cu0 has a negative effect on ammonia stripping regardless of the aeration condition. In comparison to control, dosing only 10 mg/L NZVI/Cu0, the phosphorus removal increased sharply both under aerobic and anaerobic conditions, these outcomes were obtained as a result of complete dissolution of bimetallic nanoparticles which formed copper-iron oxides components that are attributed to increasing the phosphorus adsorption rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号