共查询到20条相似文献,搜索用时 15 毫秒
1.
Gentry LE David MB Royer TV Mitchell CA Starks KM 《Journal of environmental quality》2007,36(2):408-415
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois. 相似文献
2.
Richards RP Baker DB Crumrine JP Kramer JW Ewing DE Merryfield BJ 《Journal of environmental quality》2008,37(5):1894-1908
Sediment is an important pollutant for Lake Erie and its tributaries as a carrier of other substances and as a pollutant in its own right. Environmental managers have called for major reductions in sediment loadings in Lake Erie tributaries. In this study, 30-yr (1975-2005) datasets with daily resolution are analyzed to identify and interpret trends in sediment concentrations and loads in major US tributaries to Lake Erie. The Maumee and Sandusky Rivers in agricultural northwest Ohio show continual decreases throughout this period, but the River Raisin shows increases, especially in the last decade. The urban and forested Cuyahoga River shows little trend before 2000 but shows increases since then. The mostly forested Grand River shows strong decreases before 1995, little change thereafter until the early 2000s, and then increases. In most cases, the greatest decreases or smallest increases, depending on the river, are associated with summer and fall and with low flow conditions, whereas the smallest decreases or greatest increases are associated with the spring and with high flow conditions. Analysis of concentration-flow relationships indicates that these changes are not due to weather but reflect positive and negative anthropogenic influences. Sediment decreases in the northwestern Ohio tributaries seem to reflect the successful use of agricultural practices to reduce erosion and prevent sediment loss. Opportunities for further reductions in sediment loads and concentrations lie in better management of sediment losses during winter and spring. 相似文献
3.
Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries 总被引:1,自引:0,他引:1
During the past three decades, numerous government programs have encouraged Lake Erie basin farmers to adopt practices that reduce water pollution. The first section of this paper summarizes these state and federal government agricultural pollution abatement programs in watersheds of two prominent Lake Erie tributaries, the Maumee River and Sandusky River. Expenditures are summarized for each program, total expenditures in each county are estimated, and cost effectiveness of program expenditures (i.e., cost per metric ton of soil saved) are analyzed. Farmers received nearly $143 million as incentive payments to implement agricultural nonpoint source pollution abatement programs in the Maumee and Sandusky River watersheds from 1987 to 1997. About 95% of these funds was from federal sources. On average, these payments totaled about $7000 per farm or about $30 per farm acre (annualized equivalent of $2 per acre) within the watersheds. Our analysis raises questions about how efficiently these incentive payments were allocated. The majority of Agricultural Conservation Program (ACP) funds appear to have been spent on less cost-effective practices. Also, geographic areas with relatively low (high) soil erosion rates received relatively large (small) funding. 相似文献
4.
Although many studies have pointed out the various controlling factors of sediment and nutrient delivery on a plot or watershed scale, little is known on the spatial variability of sediment and nutrient delivery on a regional scale. This study was conducted to reveal regional variations in sediment-associated nutrient delivery in central Belgium. Sediment deposited in 13 small retention ponds was sampled and analyzed for total phosphorus (TP), K, Mg, and Ca content. The TP content of the sediment deposits varied from 510 to 2001 mg P per kg sediment. Nutrients are predominantly fixed on the very fine sediment fraction (<16 microm), which is the reason why the nutrient trap efficiency of the ponds is only a fraction of the sediment trap efficiency. Average nutrient trap efficiency of the studied ponds varies between 4 and 31%, whereas sediment trap efficiency varies between 10 and 72%. For watersheds ranging from 7 to 4873 ha, sediment yield ranged between 1.2 and 20.6 Mg ha(-1) yr(-1), whereas TP export varied from 1.8 to 39.7 kg ha(-1) yr(-1). The observed spatial variability in nutrient losses is primarily attributed to regional variations in erosion and sediment yield values and to a far lesser degree to the spatial variations in fertilizer application. Redistribution of manure in the framework of an agricultural policy may increase the rate of nutrient delivery by ways of erosion and sediment transport. 相似文献
5.
Grassed waterways (GWWs) drain surface runoff from fields without gullying along the drainageway. Secondary functions include reducing runoff volume and velocity and retaining sediments and harmful substances from adjacent fields. Grass cover (sward)-damaging sedimentation in the GWW is commonly reduced by frequent mowing, but in doing so the effectiveness of the waterway relative to the secondary functions is reduced. Our objectives were to (i) evaluate whether the maintenance of a GWW can be reduced if on-site erosion control is effective, (ii) measure the effectiveness of such a GWW, and (iii) analyze the underlying mechanisms. A long-term (1994-2000) landscape experiment was performed in four watersheds, where two had GWWs for which maintenance was largely neglected. An intensive soil conservation system was established on all fields. Runoff and sediment delivery were continuously measured in the two watersheds with GWWs and in their paired watersheds that were similar, but without GWWs. Runoff was reduced by 90 and 10% for the two sets of paired watersheds, respectively. The different efficiencies of the GWWs resulted from different layouts (doubled width and flat-bottomed vs. v-shaped drainageway). The GWWs reduced sediment delivery by 97 and 77%, respectively, but the sward was not damaged by sedimentation. Grain sizes > 50 microm were settled due to gravity in both GWWs. Smaller grain sizes were primarily settled due to infiltration, which increased with a more effective runoff reduction. In general, the results indicated a high potential of GWWs for reducing runoff volume and velocity, sediments, and agrochemicals coming from agricultural watersheds. 相似文献
6.
Preferential flow estimates to an agricultural tile drain with implications for glyphosate transport 总被引:2,自引:0,他引:2
Agricultural subsurface drains, commonly referred to as tile drains, are potentially significant pathways for the movement of fertilizers and pesticides to streams and ditches in much of the Midwest. Preferential flow in the unsaturated zone provides a route for water and solutes to bypass the soil matrix and reach tile drains faster than predicted by traditional displacement theory. This paper uses chloride concentrations to estimate preferential flow contributions to a tile drain during two storms in May 2004. Chloride, a conservative anion, was selected as the tracer because of differences in chloride concentrations between the two sources of water to the tile drain, preferential and matrix flow. A strong correlation between specific conductance and chloride concentration provided a mechanism to estimate chloride concentrations in the tile drain throughout the storm hydrographs. A simple mixing analysis was used to identify the preferential flow component of the storm hydrograph. During two storms, preferential flow contributed 11 and 51% of total storm tile drain flow; the peak contributions, 40 and 81%, coincided with the peak tile drain flow. Positive relations between glyphosate [N-(phosphonomethyl)glycine] concentrations and preferential flow for the two storms suggest that preferential flow is an important transport pathway to the tile drain. 相似文献
7.
County-level agricultural statistics were aggregated at the watershed level to provide estimates of trends in land use and agricultural management in the Maumee and Sandusky River watersheds during the period 1975-1995. Average farm size increased by 40% or more, but the number of farms decreased by nearly 40%; the total land area in agriculture also decreased, but only by about 7%. Conservation tillage increased from virtually nothing to nearly 50% of cropland in corn (Zea mays L.) and soybean [Glycine max (L.) Merr.]; most of the change is due to adoption of no-till soybean. The Conservation Reserve Program has enrolled more than 75,000 hectares, but this represents less than 5% of total farmland. The great majority of land classified as highly erodible has been placed under treatment during the study period. Cropland in soybean has increased; land in wheat (Triticum aestivum L.) and hay has decreased. Cropland in corn has decreased in the Maumee watershed and increased slightly in the Sandusky watershed. Average per-hectare yields of corn, soybean, wheat, and hay have increased by 10 to 40%. Fertilizer phosphorus sales increased until about 1980 and have declined significantly since then; fertilizer nitrogen follows a similar but less pronounced pattern. The decreases are more substantial in the Maumee watershed than in the Sandusky. Manure use for fertilizer has also declined significantly. 相似文献
8.
Trends in climatic variables, streamflow, agricultural practices, and loads of nutrients and suspended solids were estimated for 1976-1995 in the Maumee and Sandusky watersheds, two large agricultural basins draining to Lake Erie. To understand the contributions that various factors may have made to the trends in loads, earlier results of models linking loads to explanatory variables were combined with estimated trends in those variables. The study period was characterized by increases in temperature, wintertime precipitation and streamflow, conservation farming, and loads of nitrate and total suspended solids; decreases in snowfall and snow cover, fertilizer, manure from livestock, and loads of soluble reactive phosphorus; and relatively steady exports of total phosphorus. After removing the effects of trends in streamflow, nitrate loads increased much less while total suspended solids and total phosphorus loads declined. The analysis suggests that the nitrate increases were due largely to climatic factors, particularly increases in winter streamflow, decreases in snowfall and snow cover, and declining annual precipitation. Decreases in soluble reactive phosphorus were associated with changes in agricultural practices, particularly declines in fertilizer deliveries and head of livestock. 相似文献
9.
Global increases in consumption of chemical nutrients, application of pesticides, and water withdrawal to enhance agricultural yield have resulted in degraded water quality and reduced water availability. Efforts to safeguard or improve environmental conditions of agroecosystems have usually focused on managing on-farm activities to reduce materials loss and conserve habitat. Another management measure for improving environmental quality is adoption of environmental performance standards (also called outcome-based standards). This special collection of six papers presents the results of four years of research to devise scientifically credible approaches for setting environmental performance standards to protect water quantity and quality in Canadian agriculturally dominated watersheds. The research, conducted as part of Canada's National Agri-Environmental Standards Initiative, aimed to identify Ideal Performance Standards (the desired environmental state needed to maintain ecosystem health) and Achievable Performance Standards (the environmental conditions achievable using currently available and recommended best available processes and technologies). Overviews of the papers, gaps in knowledge, and future research directions are presented. As humans, livestock, and wildlife (both terrestrial and aquatic) experience greater pressures to share the same limited water resources, innovative research is needed that incorporates a landscape perspective, economics, farm practices, and ecology to advance the development and application of tools for protecting water resources in agricultural watersheds. 相似文献
10.
Fluvial sediment is a ubiquitous pollutant that negatively affects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate long-term TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that efforts to reduce sediment load from the watershed appear to be working. 相似文献
11.
A landscape-level approach was applied to eight rural watersheds to assess the role that wetlands play in reducing phosphorus loading to surface waters in the Lake Champlain Basin. Variables summarizing various characteristics of wetlands within a watershed were calculated using a geographic information system and then compared to measured phosphorus loading through multiple regression analyses. The inclusion of a variable based on the area of riparian wetlands located along low- and medium-order streams in conjunction with the area of agricultural and nonwetland forested lands explained 88% of the variance in phosphorus loading to surface waters. The best fit model coefficients (Pload = 0.86Ag + 0.64For – 30Ripwet + 160) suggest that a hectare of riparian wetland may be many times more important in reducing phosphorus than an agricultural hectare is in producing phosphorus. These results provide additional support for the concept that protection of riparian wetlands is an important management strategy for controlling stream water quality in multiuse landscapes. 相似文献
12.
Phosphorus adsorption and desorption potential of stream sediments and field soils in agricultural watersheds 总被引:1,自引:0,他引:1
Agudelo SC Nelson NO Barnes PL Keane TD Pierzynski GM 《Journal of environmental quality》2011,40(1):144-152
Phosphorus release from stream sediments into water could increase P loads leaving agricultural watersheds and contribute to lag-time between implementation of best management practices and improvement in water quality. Improved understanding of P release from stream sediments can assist in setting water quality goals and designing stream monitoring programs. The objective of this study was to estimate the relative potential of sediments and soils to release P to stream water in two agricultural watersheds. Stream sediments were collected from banks, pools, riffles, and depositional features. Soils were sampled from wheat, row crop, pasture, and manure-amended fields. Sediments and soils were analyzed for equilibrium P concentration at zero net P sorption (EPC0), maximum P adsorption capacity (P(max)), anion exchange extractable P (P(lab)), and degree of P saturation. Dissolved reactive P (DRP) of stream water was monitored. Stream sediment EPC0 was similar to or less than EPC0 from field soils; however, P(lab) of stream sediments was three times less than field soils. Sediments were sandy and had low P(max) due to low oxalate-extractable Fe and Al, which could be explained by stream geomorphology. Manure-amended fields had the highest EPC0 and P(lab) due to continued inputs of manure-based P; however, conventionally fertilized fields also represented an important P source due to their vast extent. Stream water DRP was similar to EPC0 of sediments during base flow and similar to EPC0 of field soils during storm flow. These results indicate that sediments in these streams are a relatively minor P source. 相似文献
13.
Edge TA El-Shaarawi A Gannon V Jokinen C Kent R Khan IU Koning W Lapen D Miller J Neumann N Phillips R Robertson W Schreier H Scott A Shtepani I Topp E Wilkes G van Bochove E 《Journal of environmental quality》2012,41(1):21-30
Canada's National Agri-Environmental Standards Initiative sought to develop an environmental benchmark for low-level waterborne pathogen occurrence in agricultural watersheds. A field study collected 902 water samples from 27 sites in four intensive agricultural watersheds across Canada from 2005 to 2007. Four of the sites were selected as reference sites away from livestock and human fecal pollution sources in each watershed. Water samples were analyzed for Campylobacter spp., Salmonella spp., Escherichia coli O157:H7, Cryptosporidium spp., Giardia spp., and the water quality indicator E. coli. The annual mean number of pathogen species was higher at agricultural sites (1.54 ± 0.07 species per water sample) than at reference sites (0.75 ± 0.14 species per water sample). The annual mean concentration of E. coli was also higher at agricultural sites (491 ± 96 colony-forming units [cfu] 100 mL(-1)) than at reference sites (53 ± 18 cfu 100 mL(-1)). The feasibility of adopting existing E. coli water quality guideline values as an environmental benchmark was assessed, but waterborne pathogens were detected at agricultural sites in 80% of water samples with low E. coli concentrations (<100 cfu 100 mL(-1)). Instead, an approach was developed based on using the natural background occurrence of pathogens at reference sites in agricultural watersheds to derive provisional environmental benchmarks for pathogens at agricultural sites. The environmental benchmarks that were derived were found to represent E. coli values lower than geometric mean values typically found in recreational water quality guidelines. Additional research is needed to investigate environmental benchmarks for waterborne pathogens within the context of the "One World, One Health" perspective for protecting human, domestic animal, and wildlife health. 相似文献
14.
A model based on theKLS factors of the Universal Soil Loss Equation (USLE) accurately predicted temporal dynamics and relative peak levels of suspended solids, turbidity, and phosphorus in an agricultural watershed with well-protected streambanks and cultivation to the stream edge. Fine suspended solids derived from surface runoff appeared to be a major component of the suspended solids in this stream. The model did not predict the same parameters in a watershed with unstable channel substrates, exposed streambanks, and heterogeneity in riparian vegetation and channel morphology. The rate of increase in concentration of the water quality parameters was higher than predicted in areas without riparian vegetation and with unstable substrates. Peak levels were higher than predicted where unstable channel substrates occurred, and potential energy of the stream was high because of stream alterations (removal of near-stream vegetation and creation of a uniform, straight channel). Timing of the peak levels of suspended solids, turbidity, and phosphorus in these areas seemed related to major flushes of discharge due to delayed inputs from the surface or subsurface or both or to rapid urban drainage. Higher suspended solids concentration in this stream seemed to involve larger quantities of large particles. Thus, the USLE may not adequately predict relative water quality conditions within a watershed when variation in channel morphology and riparian vegetation exists. We make the following recommendations:
- Models to predict water quality effects of management programs should combine a terrestrial phase (which details hydrologic and erosion processes associated with surface runoff) with an aquatic phase (which details hydrologic processes of scour and sediment transport in channels). The impact of near-channel areas on these hydrologic processes should receive special attention.
- Sampling schemes should be designed to account for the impact on water quality of both watershed land surface and inand near-channel processes. In order to help distinguish sources of suspended solids, researchers should emphasize analysis of size distribution of particles transported.
- Best management systems for improving the broadest range of water resources in agricultural watersheds need to be based on an expanded “critical area” approach, which includes identification of critical erosive and depositional areas in both terrestrial and aquatic environments.
15.
An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis 总被引:1,自引:2,他引:1
The term ‘indicator’ is often vague and heterogeneous, and its dynamic characteristics make it highly variable over time and
space. Based on reviews and synthesis, this study visualizes phenomena and highlights the trend of indicator selection criteria,
development methods, validation evaluation strategies for improvement. In contextualization of the intensification of agriculture
and climate change, we proposed a set of indicators for assessing agricultural sustainability in Bangladesh based on theoretically
proposed and practically applied indicators by researchers. Also, this article raises several issues of indicator system development
and presents a summary after due consideration. Finally, we underline multi-stakeholders’ participation in agricultural sustainability
assessment. 相似文献
16.
With existing and proposed air-quality regulations, ecological disasters resulting from air emissions such as those observed at Copperhill, Tennessee, and Sudbury, Ontario, are unlikely. Current air-quality standards, however, may not protect ecosystems from subacute and chronic exposure to air emissions. The encouragement of the use of coal for energy production and the development of the fossil-fuel industries, including oil shales, tar sands, and coal liquification, point to an increase and spread of fossil-fuel emissions and the potential to influence a number of natural ecosystems. This paper reviews the reported responses of ecosystems to air-borne pollutants and discusses the use of animals as indicators of ecosystem responses to these pollutants. Animal species and populations can act as important indicators of biotic and abiotic responses of aquatic and terrestrial ecosystems. These responses can indicate long-term trends in ecosystem health and productivity, chemical cycling, genetics, and regulation. For short-term trends, fish and wildlife also serve as monitors of changes in community structure, signaling food-web contamination, as well as providing a measure of ecosystem vitality. Information is presented to show not only the importance of animals as indicators of ecosystem responses to air-quality degradation, but also their value as air-pollution indices, that is, as air-quality-related values (AQRV), required in current air-pollution regulation. 相似文献
17.
Within fluvial systems, the spatial variability of geomorphological characteristics of stream channels and associated streambed properties can affect many biogeochemical processes. In agricultural streams of the midwestern USA, it is not known how geomorphological variability affects sediment denitrification rates, a potentially important loss mechanism for N. Sediment denitrification was measured at channelized and meandering headwater reaches in east-central Illinois, a region dominated by intensive agriculture and high NO(3)-N stream export, between June 2003 and February 2005 using the chloramphenicol-amended acetylene inhibition procedure. Sediment denitrification rates were greatest in separation zones, ranging from 0.6 to 76.4 mg N m(-2) h(-1), compared with riffles, point bars, pools, and a run ranging from 0 to 36.5 mg N m(-2) h(-1). Differences in benthic organic matter (r = 0.70) and the percentage of fine-grained sediments (r = 0.93) in the streambeds controlled much of the spatial variations in sediment denitrification among the geomorphological features. Although two meandering study reaches removed 390 and 99% more NO(3)-N by sediment denitrification than adjacent channelized reaches, NO(3)-N loss rates from all reaches were between 0.1 and 15.7% d(-1), except in late summer. Regardless of geomorphological characteristics, streams in east-central Illinois were not able to process the high NO(3)-N loads, making sediment denitrification in this region a limited sink for N. 相似文献
18.
Kladivko EJ Frankenberger JR Jaynes DB Meek DW Jenkinson BJ Fausey NR 《Journal of environmental quality》2004,33(5):1803-1813
Subsurface drainage is a beneficial water management practice in poorly drained soils but may also contribute substantial nitrate N loads to surface waters. This paper summarizes results from a 15-yr drainage study in Indiana that includes three drain spacings (5, 10, and 20 m) managed for 10 yr with chisel tillage in monoculture corn (Zea mays L.) and currently managed under a no-till corn-soybean [Glycine max (L.) Merr.] rotation. In general, drainflow and nitrate N losses per unit area were greater for narrower drain spacings. Drainflow removed between 8 and 26% of annual rainfall, depending on year and drain spacing. Nitrate N concentrations in drainflow did not vary with spacing, but concentrations have significantly decreased from the beginning to the end of the experiment. Flow-weighted mean concentrations decreased from 28 mg L(-1) in the 1986-1988 period to 8 mg L(-1) in the 1997-1999 period. The reduction in concentration was due to both a reduction in fertilizer N rates over the study period and to the addition of a winter cover crop as a "trap crop" after corn in the corn-soybean rotation. Annual nitrate N loads decreased from 38 kg ha(-1) in the 1986-1988 period to 15 kg ha(-1) in the 1997-1999 period. Most of the nitrate N losses occurred during the fallow season, when most of the drainage occurred. Results of this study underscore the necessity of long-term research on different soil types and in different climatic zones, to develop appropriate management strategies for both economic crop production and protection of environmental quality. 相似文献
19.
The occurrence of metabolites of many commonly used herbicides in streams has not been studied extensively in tile-drained watersheds. We collected water samples throughout the Upper Embarras River watershed [92% corn, Zea mays L., and soybean, Glycine max (L.) Merr.] in east-central Illinois from March 1999 through September 2000 to study the occurrence of atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), metolachlor 12-chloro-N-(2-ethyl-6-methylphenyl)-N-(methoxy-1-methylethyl) acetamide], alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl) acetamide], acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl) acetamide], and their metabolites. River water samples were collected from three subwatersheds of varying tile density (2.8-5.3 km tile km(-2)) and from the outlet (United States Geological Survey [USGS] gage site). Near-record-low totals for stream flow occurred during the study, and nearly all flow was from tiles. Concentrations of atrazine at the USGS gage site peaked at 15 and 17 microg L(-1) in 1999 and 2000, respectively, and metolachlor at 2.7 and 3.2 microg L(-1); this was during the first significant flow event following herbicide applications. Metabolites of the chloroacetanilide herbicides were detected more often than the parent compounds (evaluated during May to July each year, when tiles were flowing), with metolachlor ethanesulfonic acid [2-[(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxoethanesulfonic acid] detected most often (> 90% from all sites), and metolachlor oxanilic acid [2-[(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxoacetic acid] second (40-100% of samples at the four sites). When summed, the median concentration of the three chloroacetanilide parent compounds (acetochlor, alachlor, and metolachlor) at the USGS gage site was 3.4 microg L(-1), whereas it was 4.3 microg L(-1) for the six metabolites. These data confirm the importance of studying chloroacetanilide metabolites, along with parent compounds, in tile-drained watersheds. 相似文献
20.
Sourcing sediment using multiple tracers in the catchment of Lake Argyle,Northwestern Australia 总被引:5,自引:0,他引:5
Control of sedimentation in large reservoirs requires soil conservation at the catchment scale. In large, heterogeneous catchments,
soil conservation planning needs to be based on sound information, and set within the framework of a sediment budget to ensure
that all of the potentially significant sources and sinks are considered.
The major sources of sediment reaching the reservoir, Lake Argyle, in tropical northwestern Australia, have been determined
by combining measured sediment fluxes in rivers with spatial tracer-based estimates of proportional contributions from tributaries
of the main stream entering the lake, the Ord River. The spatial tracers used are mineral particle magnetics, the strontium
isotopic ratio, and the neodymium isotopic ratio. Fallout of 137Cs has been used to estimate the proportion of the sediment in Lake Argyle eroded from surface soils by sheet and rill erosion,
and, by difference, the proportion eroded from subsurface soils by gully and channel erosion. About 96% of the sediment in
the reservoir has come from less than 10% of the catchment, in the area of highly erodible soils formed on Cambrian-age sedimentary
rocks. About 80% of the sediment in the reservoir has come from gully and channel erosion. A major catchment revegetation
program, designed to slow sedimentation in the reservoir, appears to have had little effect because it did not target gullies,
the major source of sediment. Had knowledge of the sediment budget been available before the revegetation program was designed,
an entirely different approach would have been taken. 相似文献