首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study was undertaken to determine the fate of As, Mo, and V (trace elements, TEs) in the sediments of a constructed wetland in use for the remediation of potentially toxic trace element-contaminated agricultural drainwater. After three years of wetland operation, sediment cores were collected to determine changes in TE concentrations as a function of depth and the effects of varying water column depth. All TE concentrations were highest in the top 2 to 4 cm and decreased with depth. Molybdenum accumulated in the wetland sediments, up to levels of 32.5 +/- 4.6, 30.2 +/- 8.9, and 59.3 +/- 26.1 mg kg(-1) in the top 1 cm of sediment at water depths of 15, 30, and 60 cm, respectively. In the top 2 cm of sediment, As accumulated (28.2 +/- 3.0 mg kg(-1)) only at the 60-cm water depth. Below 2 cm, as much as 10 mg kg(-1) of As was lost from the sediment at all water depths. In most cases, V concentrations decreased in the sediment. In this wetland system, the lowest redox potentials were found near the sediment surface and increased with depth. Thus, in general As, Mo, and V concentrations in the sediment were highest under more reducing conditions and lowest under more oxidizing conditions. Most of the accumulated Mo (73%) became water soluble on drying of samples. This has important implications for systems undergoing changes in redox status; for instance, if these wetland sediments are dried, potentially large amounts of Mo may be solubilized.  相似文献   

2.
To thoroughly investigate the metal contamination around chromated copper arsenate (CCA)/polyethylene glycol (PEG)-treated utility poles, a total of 189 soil samples obtained from different depths and distances near six treated poles in the Montreal area (Canada) were analyzed for Cu, Cr, and As content. Various soil physicochemical properties were also determined. Ground water samples collected below the poles were analyzed for metals and bioassays with Daphnia magna were conducted. Generally, sandy soils had lower contaminant levels than clayey and organic soils. Copper concentrations in soil were highest followed by As and Cr. The highest Cu (1460 +/- 677 mg kg(-1)), As (410 +/- 150 mg kg(-1)), and Cr (287 +/- 32 mg kg(-1)) concentrations were found at the ground line and immediately adjacent to the pole. Contaminant levels then decreased with distance, approaching background levels within 0.1 m from the pole for Cr and 0.5 m for Cu and As. Chromium and Cu levels generally approached background levels at a depth of 0.5 m. Average As content near the pole on all study sites was three to eight times higher than Quebec's Level C criterion (50 mg kg(-1)), although it dropped to 31 mg kg(-1) at 0.1 m. Results also showed that As persisted up to 1 m in soil depth (17-54 mg kg(-1)). Copper and Cr concentrations in ground water samples were always <1.000 mg L(-1) and <0.05 mg L(-1), respectively and Cr(VI) was <0.02 mg L(-1). One sample contained an As concentration >0.025 mg L(-1) but bioassays showed that, overall, ground water had a low ecotoxic potential.  相似文献   

3.
Trace element mobility in soils depends on contaminant concentration, chemical speciation, water movement, and soil matrix properties such as mineralogy, pH, and redox potential. Our objective was to characterize trace element dissolution in response to acidification of soil samples from two abandoned incinerators in the North Carolina Coastal Plain. Trace element concentrations in 11 soil samples from both sites ranged from 2 to 46 mg Cu kg(-1), 3 to 105 mg Pb kg(-1), 1 to 102 mg Zn kg(-1), 3 to 11 mg Cr kg(-1), < 0.1 to 10 mg As kg(-1), and < 0.01 to 0.9 mg Cd kg(-1). Acidified CaCl2 solutions were passed through soil columns to bring the effluent solution to approximately pH 4 during a 280-h flow period. Maximum concentrations of dissolved Cu, Pb, and Zn at the lowest pH of an experiment (pH 3.8-4.1) were 0.32 mg Cu L(-1), 0.11 mg Pb L(-1), and 1.3 mg Zn L(-1) for samples from the site with well-drained soils, and 0.25 mg Cu L(-1), 1.2 mg Pb L(-1), and 1.4 mg Zn L(-1) for samples from the site with more poorly drained soils. Dissolved Cu concentration at pH 4 increased linearly with increasing soil Cu concentration, but no such relationship was found for Zn. Dissolved concentrations of other trace elements were below our analytical detection limits. Synchrotron X-ray absorption near edge structure (XANES) spectroscopy showed that Cr and As were in their less mobile Cr(III) and As(V) oxidation states. XANES analysis of Cu and Zn on selected samples indicated an association of Cu(II) with soil organic matter and Zn(II) with Al- and Fe-oxides or franklinite.  相似文献   

4.
There is concern that P from dairy effluent sprayfields will leach into groundwater beneath Suwannee River basins in northern Florida. Our purpose was to describe the effects of dairy effluent irrigation on the movement of soil P and other nutrients within the upper soil profile of a sprayfield over three 12-mo cycles (April 1998-March 2001). Effluent P rates of 70, 110, and 165 kg ha(-1) cycle(-1) were applied to forages that were grown year-round. The soil is a deep, excessively drained sand (thermic, uncoated Typic Quartzipsamment). Mean P concentration in soil water below the rooting zone (152-cm depth) was < or = 0.1 mg L(-1) during 11 3-mo periods. Mehlich-1-extractable (M1) P, Al, and Ca in the topsoil increased over time but did not change in subsoil depths of 25 to 51, 51 to 71, 71 to 97, and 97 to 122 cm. Topsoil Ca increased as effluent rate increased. High Ca levels were found in dairy effluent (avg.: 305 mg L(-1)) and supplemental irrigation water (avg.: 145 mg L(-1)) which likely played a role in retaining P in the topsoil. An effect of effluent rate on P and Al concentrations in the topsoil was not detected, probably due to large and variable quantities present at project initiation. The P retention capacity (i.e., Al plus Fe) increased in the topsoil because Al increased. Dairy effluent contained Al (avg.: 31 mg L(-1)). Phosphorus saturation ratio (PSR) increased over time in the topsoil but not in subsoil layers. Regardless of effluent rate, the P retention capacity and PSR of subsoil, which contained 119 to 229 mg kg(-1) of Al, should be taken into account when assessing the risk of P moving below the rooting zone of most forage crops.  相似文献   

5.
Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.  相似文献   

6.
Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (P(t)) concentrations than the RWs and SDB-FCs (831.9 +/- 32.5 kg ha(-1), 643.3 +/- 19.1 kg ha(-1), and 652.1 +/- 18.8 kg ha(-1), respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems.  相似文献   

7.
We studied the long-term in situ accumulation of Cu, Cr, Ni, and Zn in the soil profile of a large-scale effluent recharge basin after 24 yr of operation in a wastewater reclamation plant using the Soil Aquifer System approach in the Coastal Plain of Israel. The objective was to quantify metals accumulation in the basin's soil profile, clarify retention mechanisms, and calculate material balances and metal removal efficiency as the metal loads increase. Effluent recharge led to measurable accumulation, relative to the pristine soil, of Ni and Zn in the 0- to 4-m soil profile, with concentration increases of 0.3 to 1.3 mg kg(-1) and 2.9 to 6.4 mg kg(-1), respectively. Copper accumulated only in the 0- to 1-m top soil layer, with concentration increase of 0.28 to 0.76 mg kg(-1). Chromium concentration increased by 3.1 to 7.3 mg kg(-1) in the 0- to 1-m horizon and 0.9 to 2.3 mg kg(-1) at deeper horizons. Sequential selective extraction showed Cu tended to be preferentially retained by Fe oxides and organic matter (OM), Cr by OM, Ni by OM, and carbonate and Zn by carbonate. The average total retained amounts of Cu, Cr, Ni, and Zn were 0.7 +/- 1.0, 13.6 +/- 4.8, 4.3 +/- 3.6, and 28.7 +/- 5.4 g per a representative unit soil slab (1 m(2) x 4 m) of the basin, respectively. This amounts to 3.6 +/- 4.9%, 79.5 +/- 28.0%, 8.0 +/- 6.9%, and 9.3 +/- 1.8% of the Cu, Cr, Ni, and Zn loads, respectively, applied during 24 yr of effluent recharge (total of approximately 1880 m effluent load). The low long-term overall removal efficiency of the metals from the recharged effluent in the top horizon may be due to the metals' low concentrations in the recharged effluent and the low adsorption affinity and retention capacity of the sandy soil toward them. This leads to attainment of a quasi-equilibrium and a steady state in element distribution between the recharged effluent solution and the soil after few years of recharge and relatively small cumulative effluent loadings.  相似文献   

8.
Ocoee Lake No. 3 is the first reservoir receiving suspended sediments contaminated with trace metals discharged by acid mine effluents from the Ducktown Mining District, Tennessee. Bottom sediments (0-5 cm) from the lake were sampled to assess the potential for future adverse environmental effects if no remediation controls or activities are implemented. The sediments were found to include a major component (173 +/- 19 g kg(-1)) that dissolved in 6 mol L(-1) HCl within 24 h. This acid-soluble and relatively labile fraction contained high concentrations of Fe (460 +/- 40 g kg(-1)), Al (99 +/- 11 g kg(-1)), Mn (10 +/- 8 g kg(-1)), Cu (2000 +/- 700 mg kg(-1)), Zn (1300 +/- 200 mg kg(-1)), and Pb (300 +/- 200 mg kg(-1)). When the pH of water in contact with the sediment was decreased experimentally from 6.4 to 2.6, the concentrations of dissolved trace metals increased by factors of 2200 for Pb, 160 for Cu, 21 for Zn, 9 for Cd, 8 for Ni, and 5 for Co. The order in which metals were released with decreasing pH was the reverse of that reported for pH-dependent sorption of these metals in upstream systems. Substantial release of trace metals from the sediment was observed even by a modest decrease of pH from 6.4 to 5.9. Therefore, the metal-rich sediment of the lake should be considered as potentially hazardous to bottom-dwelling aquatic species and other organisms in the local food chain. In addition, if the reservoir is dredged or if the dam is removed, the accumulated sediment may have to be treated for recovery of sorbed metals.  相似文献   

9.
Denitrification in alluvial wetlands in an urban landscape   总被引:1,自引:0,他引:1  
Riparian wetlands have been shown to be effective "sinks" for nitrate N (NO3-), minimizing the downstream export of N to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested watersheds, with relatively little work on riparian wetland function in urban watersheds. We investigated the variation and magnitude of denitrification in three constructed and two relict oxbow urban wetlands, and in two forested reference wetlands in the Baltimore metropolitan area. Denitrification rates in wetland sediments were measured with a 15N-enriched NO3- "push-pull" groundwater tracer method during the summer and winter of 2008. Mean denitrification rates did not differ among the wetland types and ranged from 147 +/- 29 microg N kg soil(-1) d(-1) in constructed stormwater wetlands to 100 +/- 11 microg N kg soil(-1) d(-1) in relict oxbows to 106 +/- 32 microg N kg soil(-1) d(-1) in forested reference wetlands. High denitrification rates were observed in both summer and winter, suggesting that these wetlands are sinks for NO3- year round. Comparison of denitrification rates with NO3- standing stocks in the wetland water column and stream NO3- loads indicated that mass removal of NO3- in urban wetland sediments by denitrification could be substantial. Our results suggest that urban wetlands have the potential to reduce NO3- in urban landscapes and should be considered as a means to manage N in urban watersheds.  相似文献   

10.
Mechanisms of nutrient attenuation in a subsurface flow riparian wetland   总被引:2,自引:0,他引:2  
Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.  相似文献   

11.
Adsorption and transport of arsenic(V) in experimental subsurface systems   总被引:1,自引:0,他引:1  
The adsorption and transport of As(V) in a heterogeneous, iron oxide-containing soil was investigated in batch and column laboratory experiments. The As(V) adsorbed rapidly to the soil over the first 48 h, but continued to adsorb slowly over the next several weeks, clearly indicating the potential for rate-limited transport. The equilibrium As(V) adsorption isotherm was markedly nonlinear, further indicating the potential for nonideal transport. A model developed for the adsorption of As(V) to hydrous ferric oxide (HFO) was able to predict the pH-dependent adsorption of As(V) to the soil in batch experiments within 0.116 to 0.726 root mean square error (RMSE). Arsenic(V) was significantly retarded in column transport experiments. The column transport experiments were modeled using the one-dimensional advection-dispersion equation, considering both linear and nonlinear adsorption equilibrium. Although the nonlinear local equilibrium model (NLLE, RMSE = 0.273) predicted the data better than the linear local equilibrium model (LLE, RMSE = 0.317), As(V) breakthrough occurred more rapidly than predicted by either model due to adsorption nonequilibrium. However, due to the presence of an irreversible or slowly desorbing fraction, the peak aqueous As(V) concentration (0.624 mg L(-1)) and the total amount of As(V) recovered (44%) was lower than predicted based on the two equilibrium models (NLLE and LLE). For the conditions used in this study [1 mg L(-1) As(V), pH 4.5 and 9,0-0.25 mM PO4, 0.53-1.6 cm min(-1) pore water velocity], the effect on As(V) mobility and recovery increased in the order pH < pore water velocity < PO4.  相似文献   

12.
Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.  相似文献   

13.
Trace element speciation in poultry litter   总被引:8,自引:0,他引:8  
Trace elements are added to poultry feed for disease prevention and enhanced feed efficiency. High concentrations are found in poultry litter (PL), which raises concerns regarding trace element loading of soils. Trace metal cation solubility from PL may be enhanced by complexation with dissolved organic carbon (DOC). Mineralization of organo-As compounds may result in more toxic species such as As(III) and As(V). Speciation of these elements in PL leachates should assist in predicting their fate in soil. Elemental concentrations of 40 PL samples from the southeastern USA were determined. Water-soluble extractions (WSE) were fractionated into hydrophobic, anionic, and cationic species with solid-phase extraction columns. Arsenic speciation of seven As species, including the main As poultry feed additives, roxarsone (ROX; 3-nitro-4-hydroxyphenylarsonic acid) and p-arsanilic acid (p-ASA; 4-aminophenylarsonic acid), was performed by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Total As concentrations in the litter varied from 1 to 39 mg kg(-1), averaging 16 mg kg(-1). Mean total Cu, Ni, and Zn concentrations were 479, 11, and 373 mg kg(-1), respectively. Copper and Ni were relatively soluble (49 and 41% respectively) while only 6% of Zn was soluble. Arsenic was highly soluble with an average of 71% WSE. Roxarsone was the major As species in 50% of PL samples. However, the presence of As(V) as the major species in 50% of the PL samples indicates that mineralization of ROX had occurred. The high solubility of As from litter and its apparent ready mineralization to inorganic forms coupled with the large quantity of litter that is annually land-applied in the USA suggests a potential detrimental effect on soil and water quality in the long term.  相似文献   

14.
This study investigated different sedimentation measurement techniques and examined patterns of short-term sedimentation in two 1-ha replicate created freshwater marshes in central Ohio, USA. Short-term (one-year) sediment accumulation above feldspar, clay, glitter, and sand artificial marker horizons was compared at different water depths and distances from wetland inflow. A sediment budget was also constructed from turbidity and suspended sediment data for comparison with marker horizons. Glitter and sand marker horizons were the most successful for measuring sediment accumulation (81-100% marker recovery), while clay markers were completely unsuccessful. The sedimentation rate for both wetlands averaged 4.9 cm yr(-1) (36 kg m(-2) yr(-1)), and ranged from 1.82 to 9.23 cm yr(-1) (12.4 to 69.7 kg m(-2) yr(-1)). Sedimentation rates in deep, open water areas were significantly higher than in shallow, vegetated areas for both wetlands (t test, p < 0.05). However, observed sedimentation patterns may be attributed more to preferential flow through open water areas than to water depth or presence of vegetation. Contrary to the expected spatial distribution, sedimentation was highly variable within the wetlands, suggesting that bioturbation and turbulence may cause significant resuspension or that high hydrologic loads may distribute sediments throughout the basins. A sediment budget estimated sediment retention of approximately 740 g m(-2) yr(-1) per wetland (43% removal rate), yet gross sediment accumulation was 36,000 g m(-2) yr(-1) measured by marker horizons. These results suggest that erosive forces may have influenced sedimentation, but also may indicate problems with the sediment budget calculation methodology.  相似文献   

15.
Denitrification potential (DP) and organic matter (OM) in soils were compared in three different vegetation communities-emergent macrophyte, open water, and forested edge-in two 10-yr-old created riverine wetlands. Organic matter, cold water-extractable organic matter (CWEOM), anaerobic mineralizable carbon (AnMC), and DP varied significantly (P<0.05) among vegetation communities. The surface (0 to 9 cm) soils in the emergent macrophyte community (EMC) showed highest DP (0.07+/-0.01 mg N h-1 kg-1), OM (84.90+/-5.60 g kg-1), CWEOM (1.12+/-0.20 g kg-1), and AnMC (1.50+/-0.10 mg C h-1 kg-1). In the deeper layer (9 to 18 cm), DP and CWEOM (0.04+/-0.01 mg N h-1 kg-1 and 1.13+/-0.20 g kg-1, respectively) were significantly higher in the open water community (OWC) than in the emergent macrophyte and forested edge communities. Plant introduction did not affect DP or OM content and characteristics. After 10 yr of wetland development, mean DP increased 25-fold in the surface layer (from 0.002 to 0.053 mg N h-1 kg-1); OM content more than doubled to 90.80+/-19.22 g kg-1, and CWEOM and HWEOM increased 2.5 and 2.7 times respectively from 1993 (prewetland conditions) to 2004. Humic acids were the most abundant form of OM in 2004 and 1993 samples. Significant (P<0.05) positive relationships between DP and OM, CWEOM, and AnMC were found in the surface layer; in the 9- to 18-cm layer, significant positive relationships were found between DP and CWEOM and AnMC.  相似文献   

16.
Largely influenced by the passage of the Swamp Land Act of 1849, many wetlands were lost in the coastal plain region of the southeastern United States, primarily as a result of drainage for agricultural activities. To better understand the chemical response of soils during wetland conversion, soil core samples were collected from the converted beef cattle pastures and from the natural wetland at Plant City, FL in the summers of 2002 and 2003. Data collected from the natural wetland sites were used as reference data to detect potential changes in soil properties associated with the conversion of wetlands to improved beef cattle (Bos taurus) pastures from 1940 to 2003. The average concentration of total phosphorus (TP) in pasture soils (284 mg kg(-1)) was significantly (p 相似文献   

17.
Revegetation of arsenic (As)-rich mine spoils is often impeded by the lack of plant species tolerant of high As concentrations and low nutrient availability. Basin wildrye [Leymus cinereus (Scribner & Merr.) A. L?ve] has been observed to establish naturally in soils with elevated As content and thus may be useful for the stabilization of As-contaminated soils. An experiment was conducted to evaluate how variable phosphorus (P) concentrations and inoculation with site-specific arbuscular mycorrhizal fungi influence As tolerance of basin wildrye. Basin wildrye was grown in sterile sand in the greenhouse for 16 weeks. Pots of sterile sand were amended to create one of four rates of As (0, 3, 15, or 50 mg As kg(-1)), two rates of P (3 or 15 mg P kg(-1)), and +/-mycorrhizal inoculation in a 2 x 4 x 2 factorial arrangement. After 16 weeks of growth, plants were harvested, shoots and roots thoroughly washed, and the tissue analyzed for total shoot biomass, total root and shoot As and P concentrations, and degree of mycorrhizal infection. Basin wildrye was found to be tolerant of high As concentrations allowing for vigorous plant growth at application levels of 3 or 15 mg As kg(-1). Arsenic was sequestered in the roots, with 30 to 50 times more As in the roots than shoots under low P conditions. Mycorrhizal infection did not confer As tolerance in basin wildrye nor did mycorrhizal fungi influence biomass production. Phosphorus concentrations of 15 mg kg(-1) effectively inhibited As accumulation in basin wildrye. Basin wildrye has the potential to be used for stabilization of As-rich soils while minimizing exposure to grazing animals following reclamation.  相似文献   

18.
Sedimentation under pulsed and steady-flow conditions was investigated in two created flow-through riparian wetlands in central Ohio over 2 yr. Hydrologic pulses of river water lasting for 6 to 8 d were imposed on each wetland from January through June during 2004. Mean inflow rates during pulses averaged 52 and 7 cm d(-1) between pulses. In 2005, the wetlands received a steady-flow regime of 11 cm d(-1) with no major hydrologic fluctuations. Thirty-two sediment traps were deployed and sampled once per month in April, May, June, and July for two consecutive years in each wetland. January through March were not sampled in either year due to frozen water surfaces in the wetlands. Gross sedimentation (sedimentation without normalizing for differences between years) was significantly greater in the pulsing study period (90 kg m(-2)) than in the steady-flow study period (64 kg m(-2)). When normalized for different hydrologic and total suspended solid inputs between years, sedimentation for April through July was not significantly different between pulsing and steady-flow study periods. Sedimentation for the 3 mo that received hydrologic pulses (April, May, and June) was significantly lower during pulsing months than in the corresponding steady-flow months. Large fractions of inorganic matter in collected sediments indicated that allochthonous inputs were the main contributor to sedimentation in these wetlands. Organic matter fractions of collected sediments were consistently greater in the steady-flow study period (1.8 g kg(-1)) than in the pulsed study period (1.5 g kg(-1)), consistent with greater primary productivity in the water column during steady-flow conditions.  相似文献   

19.
The hazard imposed by trace element contaminants within soils is dependent on their ability to migrate into water systems and their availability for biological uptake. The degree to which a contaminant may dissociate from soil solids and become available to a target organism (i.e., bioaccessibility) is therefore a determining risk factor. We used a physiologically based extraction test (PBET) to estimate the bioaccessible fraction of arsenic-, chromium-, and lead-amended soil. We investigated soils from the A and B horizons of the Melton Valley series, obtained from Oak Ridge National Laboratory site, to address temporal changes in bioaccessibility. Additionally, common extractions that seek to define reactive pools of metals were employed and their correlation to PBET levels evaluated. With the exception of Pb amended to the A horizon, all other treatments exhibited an exponential decrease in bioaccessibility with incubation time. The bioaccessible fraction was less than 0.2 mg kg(-1) within 30 d of incubation for As and Cr in the A horizon and for As and Pb within the B horizon; Cr in the B horizon declined to nearly 0.3 mg kg(-1) within 100 d of aging. The exchangeable fraction declined with incubation period and, with the exception of Pb, was highly correlated with the decline in bioaccessibility. Our results demonstrate limited bioaccessibility in all but one case and the need to address both short-term temporal changes and, most importantly, the soil physiochemical properties. They further reveal the importance of incubation time on the reactivity of such trace elements.  相似文献   

20.
直播稻田渗漏水磷素动态变化及渗漏流失潜力研究   总被引:1,自引:0,他引:1  
顾佳  葛云 《四川环境》2010,29(6):28-32
通过田间实验,对太湖流域丹阳地区直播水稻田不同施磷水平下渗漏水磷素动态变化特征及流失潜力进行了研究。结果表明,施磷能明显提高地下60cm以上深度土层渗漏水磷的含量。各土层渗漏液总磷浓度随土层深度的增加呈下降趋势。随着施磷量的增加,稻田渗漏水磷素含量也会随之增加。土壤磷素发生渗漏流失的土壤表层Olsen-P含量的"突变点"change-Point为25.17 mg/kg。当土壤中的Olsen-P浓度小于25.17mg/kg时,20~40cm土层渗漏水中TP浓度基本上不随土壤Olsen-P浓度的变化而变化,但当土壤中Olsen-P大于25.17mg/kg时,20~40cm土层渗漏水中TP浓度会大量增加,且土壤中的Olsen-P每增加10 mg/kg,渗漏水TP将增加0.21 mg/L。稻田当季累计土壤磷素渗漏流失负荷为1.02 kg/ha,占当季施磷量的2.80%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号