首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This experiment was conducted to study the genotoxic potentials of sodium arsenite (NaAsO2) in freshwater fish Oreochromis mossambicus by using alkaline comet assay and micronucleus (MN) test. Fish were exposed to three different concentrations (3 ppm, 28 ppm and 56 ppm) of arsenic and gill, liver and blood tissue samples were collected after 48 h, 96 h and 192 h of exposure. Arsenic exposure induced DNA damage in all tissues examined in a concentration dependent manner. A significant (< 0.05) increase in the comet tail DNA (%) of the exposed fish liver, gill, and blood was observed after 48 h and 96 h of exposure, but a decline in DNA damage was recorded in all the tissues at all the three concentrations studied after 192 h of exposure. Liver tissue exhibited significantly (< 0.05) higher DNA damage at all the concentrations examined, followed by gill and blood. Higher liver tail DNA (51.38 ± 0.21%) refers that it is more prone to injury to arsenic toxicity than the gill and blood. In blood samples arsenic induced micronucleus formation in a concentration dependent manner and highest (5.8 ± 0.46%) value was recorded in 56 ppm after 96 h of exposure, whereas, it was decreased after 192 h of exposure at all the three concentrations of NaAsO2 examined which refers to the DNA repairing ability of fish to arsenic toxicity. The results of this study depict the genotoxic potentials of arsenic to fish which in turns provide insight on advanced study in aquatic toxicology.  相似文献   

2.
Wide distribution, stability and long persistence in the environment of dichlorodiphenyltrichloroethane (DDT), probably the best-known and most useful insecticide in the world, imposes the need for further examination of the effect of this chemical on human health and especially on the human genome. In this study, peripheral blood human lymphocytes from a healthy donor were exposed to 0.025 mg/L concentration of p,p'-DDT at different time periods (1, 2, 24 and 48 h). For the assessment of genotoxic effect, the new criteria for scoring micronucleus test and alkaline comet assay were used. Both methods showed that p,p'-DDT induces DNA damage in low concentration used in this research. Results of micronucleus test showed a statistically significant (p < 0.05) genotoxic effect of p,p'-DDT on human lymphocytes compared with corresponding control and a different exposure time. A comet assay also showed increased DNA damage caused in p,p'-DDT-exposed human lymphocytes than in corresponding control cells for the tail length. Results obtained by measuring the level of DNA migration and incidence of micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) indicate the sensitivity of these tests and their application in detection of primary genome damage after long-term exposure to establish the effect of p,p'-DDT on human genome.  相似文献   

3.

We previously reported high levels of phthalate esters (PAEs) added as solvents or fixatives in 47 brands of perfumes. Diethyl phthalate was the most abundant compound (0.232–23,649 ppm), and 83.3% of the perfumes had levels >1 ppm, the threshold limit cited by a Greenpeace investigation. All samples had dimethyl phthalate levels higher than its threshold limit of 0.1 ppm, and 88, 38, and 7% of the perfumes had benzyl butyl phthalate, di(2-ethylhexyl) phthalate, and dibutyl phthalate levels, respectively, above their threshold limits. The role of PAEs as endocrine disruptors has been well documented, but their effect on genotoxic behavior has received little attention. We used in vitro single-cell gel electrophoresis (comet) and micronucleus (MN) assays with human lymphoblastoid TK6 cells to evaluate the genotoxic potency of 42 of the same perfumes and to determine its association with PAEs. All perfumes induced more DNA damage than a negative control (NEG), ≥ 90% of the samples caused more damage than cells treated with the vehicles possibly used in perfume’s preparations such as methanol (ME) and ethanol (ET), and 11.6% of the perfumes caused more DNA damage than a positive control (hydrogen peroxide). Chromosome breakage expressed as MN frequency was higher in cells treated with 71.4, 64.3, 57.1, and 4.8% of the perfumes than in NEG, cells treated with ME or ET, and another positive control (x-rays), respectively. The genotoxic responses in the comet and MN assays were not correlated. The comet assay indicated that the damage in TK6 cells treated with five PAEs at concentrations of 0.05 and 0.2 ppm either individually or as a mixture did not differ significantly from the damage in cells treated with the perfumes. Unlike the comet assay, the sensitivity of the MN assay to PAEs was weak at both low and high concentrations, and MN frequencies were generally low. This study demonstrates for the first time the possible contribution of PAEs in perfumes to DNA damage and suggests that their use as solvents or fixatives should be regulated. Other ingredients with mutagenic/genotoxic properties, however, may also have contributed to the DNA damage. Future studies should focus on applying a series of assays that use different cellular models with various endpoints to identify the spectrum of genotoxic mechanisms involved.

  相似文献   

4.
Feng S  Kong Z  Wang X  Zhao L  Peng P 《Chemosphere》2004,56(5):457-463
Imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitro-imidazolidin-2-ylideneamine] and RH-5849 [2'-benzoyl-l'-tert-butylbenzoylhydrazinel] are two pesticides used in China since 1992. In the present study we conducted acute toxicity test, micronucleus (MN) test and comet assay of the two pesticides on amphibian, Rana N. Hallowell, a sensitive organism suitable for acting as the bio-indicator of aquatic and agricultural ecosystems. The values of LC50-48 h of imidacloprid were found to be 165 mg l(-1) for tadpoles of Rana limnocharis and 219 mg l(-1) for tadpoles of Rana N. Hallowell. On the other hand, RH-5849 showed no acute toxicity to tadpoles during the 96 h exposure even it was saturated in the test solutions. There were significant differences in the MN frequencies between the negative controls and the treated groups at the dose of 8 mg l(-1) for imidacloprid (p < 0.05) and 40 mg l(-1) for RH-5849 (p < 0.01). Comet assay found significant differences (p < 0.01) in the distributions of DNA damage grades between the negative controls and groups treated in vitro with 0.05, 0.1, 0.2 and 0.5 mg l(-1) of imidacloprid and 5, 25, 50 and 100 mg l(-1) of RH-5849, respectively. DNA damage scores increased with the exposure levels of the two pesticides and dose-effect relationships were observed for both imidacloprid (r2 = 0.92) and RH-5849 (r2 = 0.98). The MN test and comet assay revealed potential adverse effects of the two pesticides on DNA in the erythrocytes of amphibians in aquatic and agricultural ecosystems.  相似文献   

5.
Wide distribution, stability and long persistence in the environment of dichlorodiphenyltrichloroethane (DDT), probably the best-known and most useful insecticide in the world, imposes the need for further examination of the effect of this chemical on human health and especially on the human genome. In this study, peripheral blood human lymphocytes from a healthy donor were exposed to 0.025 mg/L concentration of p,p′-DDT at different time periods (1, 2, 24 and 48 h). For the assessment of genotoxic effect, the new criteria for scoring micronucleus test and alkaline comet assay were used. Both methods showed that p,p′-DDT induces DNA damage in low concentration used in this research. Results of micronucleus test showed a statistically significant (p < 0.05) genotoxic effect of p,p′-DDT on human lymphocytes compared with corresponding control and a different exposure time. A comet assay also showed increased DNA damage caused in p,p′-DDT-exposed human lymphocytes than in corresponding control cells for the tail length. Results obtained by measuring the level of DNA migration and incidence of micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) indicate the sensitivity of these tests and their application in detection of primary genome damage after long-term exposure to establish the effect of p,p′-DDT on human genome.  相似文献   

6.
We evaluated 41 rural workers occupationally exposed to pesticides and 32 subjects as a control group, using the micronucleus (MN) and the comet assay. For the comet assay, we evaluated the peripheral blood, and for the MN, we sampled cells from the oral epithelium. Damage to DNA was measured by tail length, % DNA in tail (% tail), olive tail moment (OTM), and tail moment (TM). The exposed group presented an 8× increase in MN frequency, when compared to the control group (p <0.05). When we contrasted the MN frequencies between the individuals that use and do not use personal protective equipment, we found a mean of 7.5 MN (57 % variance) and 12.1 MN (130 % variance), respectively. The binucleated cells were 0.04 and 0.005, in the exposed and control groups, respectively, indicating 8× increase in the number of binucleated cells, when comparing the groups (p <0.05). In the comet assay, we demonstrated statistically significant differences in three parameters (% DNA, OTM, and TM) indicating that the rural workers presented high levels of genomic damages. Our results indicate that occupational exposure to pesticides could cause genome damage in somatic cells, representing a potential health risk to Brazilian rural workers that deal constantly with agrochemicals without adequate personal protection equipment.  相似文献   

7.
V Bombail  D Aw  E Gordon  J Batty 《Chemosphere》2001,44(3):383-392
This report describes an investigation of genotoxic effects in an inter-tidal fish species sampled along a pollution gradient in the Firth of Forth, Scotland, UK. The comet assay is an electrophoretic technique for measuring DNA breakage in nuclei from individual cells and has only recently been applied to field investigations of genotoxicity. The measurement of nuclear anomalies (NA), such as the presence of micronuclei (MN) and 'lobes', has been successfully utilised in many field studies of genotoxic effects of contaminated sediments. These two techniques were applied to nucleated red blood cells (RBC) from the butterfish, Pholis gunnellus. The comet assay was adapted and validated for use in this species. Fish were sampled from the inner Firth of Forth, which has a legacy of industrial contamination and the outer Firth of Forth which is comparatively clean. The analysis of DNA strand breakage using this technique did not reveal any significant differences between animals sampled from inner and outer zones of the Firth. In contrast, MN and NA frequencies were elevated in the inner polluted zone of the Firth compared to the outer zone. This study suggests: (1) there are genotoxic effects associated with contaminants in the inner Firth of Forth, and (2) the comet assay may not be a suitable genotoxicity biomarker in fish.  相似文献   

8.
Planarian neoblasts are somatic stem cells that have the potential to be used in genotoxicity assays due to their proliferative nature, sensitivity to genotoxic agents, and experimental accessibility. Two freshwater planarian species, Girardia tigrina and Girardia schubarti, were used to develop a neoblast-based micronucleus (MN) assay to assess genotoxicity. Intact or regenerating planarians were exposed to gamma-rays, methyl methanesulphonate (MMS), or cyclophosphamide (CP), and neoblast MN frequency was measured. Exposure to the clastogens had no detectable effect on the MN frequency of intact planarian neoblasts. However, for regenerating individuals, active neoblast proliferation was induced by decapitation, and gamma-ray doses as low as 0.5 Gy, and MMS and CP concentrations as low as 0.8 microM and 100 mM, respectively, induced a significant increase in MN frequency. Exposure to higher doses of gamma-rays consistently resulted in detectable increases in MN frequency. For MMS and CP, concentrations of up to 1.6 microM and 200 mM, respectively, resulted in significant increases in MN frequency, but exposures to higher concentrations led to a decrease to non-significant levels, possibly due to cytotoxic effects of MMS and CP. After completion of regeneration, the MN frequencies returned to those of non-exposed controls, indicating that the neoblast MN assay for regenerating G. tigrina or G. schubarti reflects chromosomal damage caused by acute exposure to clastogenic agents. Upon standardization, this assay may represent an interesting alternative that allows damage caused to freshwater organisms by potentially genotoxic environmental pollutants to be monitored.  相似文献   

9.
In order to avoid that contaminated frog farms animals escaping in the environment and become potential vector of emergent diseases, studies with disinfection protocol are strictly necessary. The formaldehyde is one of the compounds tested in fungal disinfection protocols and also used in aquaculture. This study aimed to determine the median lethal concentration (LC50–96h) of formaldehyde in bullfrog tadpoles and to evaluate the possible genotoxic effects in acute exposition. Accordingly, the animals were exposed to formaldehyde in the concentrations of 6, 9, 12, 15, and 18 mg L?1, and after 96 h blood samples were drawn for the micronucleus (MN) test. The LC50–96h was 10.53 mg L?1, and the MN frequency increased in proportion to the formaldehyde concentrations, with an estimated frequency in the negative control being 1.35 MN/individual. We concluded that formaldehyde is genotoxic to tadpoles of bullfrogs in the tested concentrations, and the choice of this chemical should be contemplated before its use in animals in captivity.  相似文献   

10.
Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida   总被引:9,自引:0,他引:9  
In this paper, several studies were conducted to evaluate the genotoxicity of two pesticides, Imidacloprid and RH-5849, for earthworm (Eisenia fetida). Earthworms were exposed in different exposure systems to evaluate their acute toxicity and the genotoxicity of the two pesticides was evaluated by using the method of sperm deformity assessment, micronucleus test of root tip cells in Vicia faba, a mouse bone-marrow micronucleus test, and comet assay. LC(50) (interpolated concentration at which 50% mortality of test population occurs) for earthworms varied in different exposure systems. The results indicated that Imidacloprid was consistently more toxic than RH-5849 in all exposure systems. In this study, sperm deformity test was used to detect the potential adverse influences of pesticides on the reproduction of earthworms. The results demonstrated that significant induction of sperm deformity (p<0.01) and a dose-effect relationship displayed at Imidacloprid concentrations higher than 0.5 mg/kg dry soil. However, the sperm deformity frequency of groups exposed to RH-5849 did not show significant difference (p>0.05) from the control until the dose reached 100 mg/kg dry soil. The results of the V. faba micronucleus tests showed that micronuclei frequency of the exposed group did not show significant difference (p>0.05) from the control until the concentration of Imidacloprid and RH-5849 reached 100 mg/ml. The results of the mouse bone-marrow micronuclei test also indicate that two pesticides did not show significant effects (p>0.05) on the micronuclei frequency in mice bone-marrow cells until the dose reached 100 mg/kg for Imidacloprid and 300 mg/kg for RH-5849 (2/3 LD(50)). Although no genotoxicity was detected by using the micronucleus tests, the results of the comet assay showed that the two pesticides induce significant DNA damage (p<0.01) in earthworms and dose-effect relationships were displayed. The 'earthworm comet assay' is a rapid and sensitive way to screen chemicals or terrestrial environments for their DNA-damaging properties.  相似文献   

11.
Liu W  Yang YS  Li P  Zhou Q  Sun T 《Chemosphere》2004,57(2):101-106
The cytotoxic and genotoxic effects of 1,2,4-trichlorobenzene (TCB), chlorobenzene (CB), and hexachlorobenzene (HCB) on root growth and DNA strand breakage damage of soybean nuclei in the test soil were studied using the comet assay. Results indicated that the root growth was significantly inhibited, and DNA strand breaks and the comet tail in the root tip nuclei were both induced after 48 h exposure with TCB concentrations of 50, 100, 200, 300 microg g(-1) in the soil. DNA strand breakage was more sensitive to the TCB than the root growth. There was a significant dose-response relationship between the TCB exposure and DNA strand breakage in the soybean nuclei. Thus it is possible for DNA strand breakage to be used as a biomarker of soybean exposed to TCB contamination. Significant cytotoxic threshold concentration of the TCB exposure on the root growth inhibition was determined as 61 microg g(-1) in the soil. The toxicity of 100-1,000 microg g(-1) CB and HCB to the soybean seedlings in the soil were not observed after 48 h or longer exposure.  相似文献   

12.
Copper is a common environmental contaminant, which is particularly toxic to living organisms when in high concentrations. To monitor environmental contamination by Cu2+ and other heavy metals, well characterized bioindicator organisms and standardized assays are needed. As a first step toward this end, we have analysed Cu2+ effects upon Girardia tigrina freshwater planarians, based on the assessment of mobility, regeneration performance, micronucleus (MN) frequency in regenerating animals, and reproductive performance. These four biomarkers provided complementary information on Cu2+ toxicity, teratogenicity, mutagenicity and chronic (>96 h of exposure) effects, respectively. The LC50 was calculated for newborn, adult and regenerating planarians, and values of 12+/-0.02 mg l(-1), 42+/-0.08 mg l(-1), 48+/-0.13 mg l(-1), respectively, were obtained after 96 h of exposure. Mobility, for intact adults, and time of regeneration and MN frequency, for regenerating animals, were significantly affected by Cu2+ concentrations as low as 0.10 mg l(-1). MN assay for regenerating G. tigrina neoblasts showed higher sensitivities than MN assays performed with other bioindicator freshwater organisms, such as moluscs or fish. Chronic exposure effects were clearly evidenced by assessment of reproductive performance, with significant reduction in fecundity and fertility rates upon exposure to Cu2+ concentrations as low as 0.05 mg l(-1). Therefore, G. tigrina can be regarded as a useful bioindicator species for the detection and evaluation of Cu2+ effects upon freshwater invertebrates, allowing insights on the effects of Cu2+ (and possibly other heavy metals) in a freshwater environment.  相似文献   

13.
This report describes an investigation of genotoxic effects in medicinal leech (Hirudo verbana) exposed to water and sediment of Lake Njivice (Krk Island, Croatia) contaminated by aluminium compounds. The levels of primary DNA damage in leech haemocytes and loss of DNA integrity caused by acute and chronic exposure to contaminated water and sediment were investigated using the alkaline comet assay. Genotoxic effects induced by acute exposure to contaminants were evaluated on leech haemocytes and blood cells of fish and mouse treated ex vivo. The effects of chronic exposure were assessed on haemocytes sampled from an animal kept under laboratory conditions on contaminated water and sediment for 180 days. The results indicate the DNA damaging potential of aluminium compounds present in an excess amount in tested samples.  相似文献   

14.
Kumar A  Sharma B  Pandey RS 《Chemosphere》2011,83(4):492-501
In the present study, two fresh water fishes namely, Channa punctatus and Clarias batrachus, were exposed to three sub-acute concentrations of synthetic pyrethroid, cypermethrin, for 96 h to evaluate the role of amino acids in fulfilling the immediate energy needs of fishes under pyrethroid induced stress as well as to find out the mechanism of ammonia detoxification. The experiments were designed to estimate the levels of free amino acid, urea, ammonia and the activities of aspartate aminotransferase (AAT), alanine aminotransferase (AlAT), glutamate dehydrogenase (GDH), glutamine synthetase (GS) and arginase in some of the vital organs like brain, gills, liver, kidney and muscle of both fish species. The significant decrease in the levels of amino acids concomitant with remarkable increase in the activities of AAT, AlAT and GDH in these vital tissues of fish species elucidated the amino acid catabolism as one of the main mechanism of meeting out the immediate energy demand of the fishes in condition of cypermethrin exposure. The levels of ammonia were significantly increased at 10% of 96 h LC(50) of cypermethrin in the different organs such as brain, gills, liver, kidney and muscle of both fish species while 15% and 20% concentrations of 96 h LC(50) of cypermehrin registered remarkable decline in both fish species. The differential increment in the activities of GDH, GS and arginase and in the level of urea established three different alternative mechanisms of ammonia detoxification. The results indicated that in C. punctatus, the prevalent mode of nitrogen excretion is in the form of conversion of ammonia into glutamine and glutamate while in C. batrachus, the excessive nitrogen is excreted in the form of urea synthesized from ammonia.  相似文献   

15.
The increase in global consumption of illicit drugs has produced not only social and medical problems but also a potential new environmental danger. Indeed, it has been established that drugs consumed by humans end up in surface waters, after being carried through the sewage system. Although many studies to measure concentrations of several drugs of abuse in freshwater worldwide have been conducted, no data have been available to evaluate their potentially harmful effects on non-target organisms until now. The present study represents the first attempt to investigate the cyto-genotoxic effects of cocaine, one of the primary drugs consumed in Western Countries, in the biological model Dreissena polymorpha by the use of a biomarker battery. We performed the following tests on Zebra mussel hemocytes: the single cell gel electrophoresis (SCGE) assay, the apoptosis frequency evaluation and the micronucleus assay (MN test) for the evaluation of genotoxicity and the lysosomal membranes stability test (neutral red retention assay; NRRA) to identify the cocaine cytotoxicity. We exposed the molluscs for 96 h to three different nominal concentrations in water (40 ng L−1; 220 ng L−1; and 10 μg L−1).Cocaine caused significant (p < 0.05) primary DNA damage in this short-term experiment, but it also caused a clear increase in micronucleated cells and a marked rise in apoptosis, which was evident in samples from even the lowest environmental cocaine concentration. Because cocaine decreased the stability of lysosomal membranes, we also highlighted its cytotoxicity and the possible implications of oxidative stress for the observed genotoxic effects.  相似文献   

16.
Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone # 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air.  相似文献   

17.
Ming Han  Zhen Guo  Guangke Li  Nan Sang 《Chemosphere》2013,90(11):2737-2742
Nitrogen dioxide (NO2) is a ubiquitous reactive free-radical gas, which has been associated with momentary and chronic health effects. In the present study, comet, micronucleus (MN) and DNA–protein crosslinks (DPC) assays were used to investigate the genotoxicity following in vivo inhalation exposure of rats to NO2. The results show that inhalation exposure of rats to NO2 induced DNA strand breakage and the formation of DPC in the cells from various internal organs (brain, lung, liver, spleen, kidney and heart), as well as resulted in obvious increase of MN frequency in the bone marrow cells of rats. Furthermore, above genotoxic responses showed significant linear dose-dependent manners. These results implicate that NO2 is a genotoxic agent and these observations are informative for understanding the mechanisms of adverse effects of nitrogen dioxide.  相似文献   

18.
The assessment of the direct impact of breakdown products of pesticide components on aquatic wildlife is ecotoxicologically relevant, but frequently disregarded. In this context, the evaluation of the genotoxic hazard posed by aminomethylphosphonic acid (AMPA—the major natural degradation product of glyphosate) to fish emerges as a critical but unexplored issue. Hence, the main goal of the present research was to assess the AMPA genotoxic potential to fish following short-term exposures (1 and 3 days) to environmentally realistic concentrations (11.8 and 23.6 μg L?1), using the comet and erythrocytic nuclear abnormalities (ENA) assays, as reflecting different levels of damage, i.e. DNA and chromosomal damage, respectively. Overall, the present findings pointed out the genotoxic hazard of AMPA to fish and, subsequently, the importance of including it in future studies concerning the risk assessment of glyphosate-based herbicides in the water systems.  相似文献   

19.
In this study, laboratory experiments were carried out in order to come to a better understanding of the fate of polycyclic aromatic hydrocarbons (PAHs) in the marine environment and especially on their bioaccumulation, biotransformation and genotoxic effects in fish. Juveniles of turbot (Scophthalmus maximus) were exposed to PAHs through different routes via (1) a mixture of dissolved PAHs, (2) a PAH-polluted sediment and (3) an oil fuel elutriate. Fish were exposed 4 days followed by a 6-day depuration period. In each experiment, PAH concentrations in the seawater of the tanks were analysed regularly by gas chromatography coupled with mass spectrometry. Muscle and liver samples were also analysed for parent PAH levels and PAH bioconcentration factors were calculated. Biotransformation was evaluated by measuring the levels of PAH metabolites in fish bile. Genotoxicity was assessed by the alkaline comet assay. Regardless of exposure route, the parent PAH concentrations in the liver and muscle showed a peak level 1 day after the beginning of the exposure, followed by a decrease up to the background level towards the end of the experiment, except for the exposure to dissolved PAHs for which levels were relatively low throughout the study. As a consequence, no bioaccumulation was observed in fish tissues at the end of the experiment. In contrast, regardless of exposure routes, a rapid production of biliary metabolites was observed throughout the whole exposure experiment. This was especially true for 1-hydroxypyrene, the major metabolite of pyrene. After 6 days of recovery in clean water, a significant decrease in the total metabolite concentrations occurred in bile. Fish exposed through either route displayed a significant increase in DNA strand breaks after 4 days of exposure, and significant correlations were observed between the level of biliary PAH metabolites and the level of DNA lesions in fish erythrocytes. Overall results indicate that exposure to either a mixture of dissolved PAHs, a PAH-contaminated sediment or a dispersed oil fuel elutriate leads to biotransformation and increase in DNA damage in fish. The quantification of PAH metabolites in bile and DNA damage in erythrocytes appear to be suitable for environmental monitoring of marine pollution either in the case of accidental oil spills or sediment contamination.  相似文献   

20.

Cyprodinil and thiacloprid are two of the most commonly used pesticides in Turkey. It is more likely to reach humans or animals due to their widespread use. This study aims to investigate whether there is a DNA damage risk due to cyprodinil and thiacloprid exposure. Zebrafish, which is used as a model organism in health and environmental research, and comet assay were chosen to demonstrate this damage. Ten zebrafish per group were exposed to 2 different concentrations for each pesticides (0.31 and 0.155 mg/L for cyprodinil and 1.64 and 0.82 mg/L for thiacloprid) for 21 days. After, gills were excised and comet assay was performed. Photos of an average of 50 cells per slide were taken and were analyzed with visual evaluation program. DNA damage was found to be increased in the 0.31 mg/L cyprodinil, 0.82 mg/L thiacloprid, and 1.64 mg/L thiacloprid treatment groups when compared to the control group (p < 0.001). Average tail DNA percentage parameter values were 9.45 ± 0.51, 10.30 ± 0.34, 11.17 ± 0.33, and 2.47 ± 0.06 respectively. Cyprodinil and thiacloprid were identified as genotoxic agents that should be investigated further.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号