首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Science of Nature -  相似文献   

2.
Fisher and Robertson (Insect Soc 46: 78–83, 1999) discovered the production of silk-like secretions emerging from slit-shaped openings along the anterior margin of the ventral hypostoma of Melissotarsus ant workers. The current histological study describes a hitherto unknown hypostomal gland from which this silk-like substance originates. In addition, this study describes a new basitarsal gland in the three pairs of legs of Melissotarsus workers.  相似文献   

3.
4.
5.
The presence of the frontal gland is well established in termite soldiers of Rhinotermitidae, Serritermitidae, and Termitidae. It is one of their main defensive adaptations or even an exclusive weapon. The gland was also occasionally reported in alate imagoes, but never in the worker caste. Here, we report the first observation of a frontal gland in workers of several Neotropical and one African species of Apicotermitinae. The ultrastructure of Aparatermes cingulatus and Anoplotermes nr. subterraneus is described in detail. In these two species, the gland is well-developed, functional and consists of class 1 secretory cells. The presence of envelope cells, wrapping the gland, is an unusual feature, as well as the presence of several zonulae adherens, connecting neighbouring glandular cells. The frontal gland of workers is homologous to this organ in soldiers and imagoes, as evidenced by the same position in the head and its connection to the same muscle. However, the defensive role of the frontal gland in workers remains to be confirmed.  相似文献   

6.
7.
8.
Preen glands exist in almost every bird species and several non-exclusive functions have been proposed for this gland and the oils that it produces. One function generally admitted is that the oily secretions of the preen gland would provide a waterproofing layer when spread over feathers. Alternatively, several authors have proposed that plumage waterproofness is mostly due to the spatial micro-structure of feathers. The purpose of this study was to examine, by manipulating the access to the preen gland, the effect of the preen oil on the plumage waterproofness and condition. To explore this question, we carried out two independent experiments where we temporarily blocked access to the preen gland secretions with a removable mechanism in one group of captive mallards (Anas platyrhynchos), whilst a second group of birds had access to gland secretions. In a long-term experiment (3 months of treatment) and a short-term experiment (10 days), we measured plumage water retention and condition. After 3 months without access to preen glands, we found a significant decrease of plumage condition and an associated increase in plumage water retention. Moreover, we found a significant correlation between plumage condition and water retention ability. In contrast, after 10 days of treatment, no significant effect was found on plumage condition and water retention. Our study shows that preen oil acts to maintain plumage condition and suggests that feather microstructure is essential to maintain plumage waterproofness.  相似文献   

9.
10.
11.
12.
13.
14.
15.
The preen gland is a holocrine sebaceous gland of the avian integument which produces an oily secretion that is spread on the plumage during preening. It has been suggested that birds may defend themselves against feather-degrading bacteria (FDB) and other potential pathogens using preen gland secretions. However, besides some in vitro studies, the in vivo bacterial inhibitory effects of the preen oil on the abundance of feather-associated bacterial species has not yet been studied in passerines. Here we tested the effect of gland removal on the abundance of FDB and other-cultivable bacterial loads (OCB) of male house sparrows (Passer domesticus). Our results did not support earlier results on in vitro antibacterial activity of preen oil against FDB since the absence of the preen gland did not significantly affect their loads related to the control birds. In contrast, we found that preen gland removal led to higher loads of OCB. This result suggests that the antimicrobial spectrum of the preen oil is broader than previously thought and that, by reducing the overall feather bacterial loads, the preen gland could help birds to protect themselves against a variety of potentially harmful bacteria.  相似文献   

16.
17.
This work was supported by a grant from the National Science Foundation. We thank T. Rice for her assistance with the SEM micrographs.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号