首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and purpose

China's environmental problems and pollution control have global implications. China??s water pollution has been increasing with its urbanization and industrialization. Although great efforts have been taken to keep its wastewater discharge standards in pace with the water pollution development and technological advances, many challenges remain. A summary of the past achievements and lessons as well as the current problems in water pollution may provide a basis for future improvements in China and a reference for other countries.

Methods

Statistical data are summarized to reveal the evolution of China??s population, wastewater discharge and corresponding discharge standards over the past four decades. In particular, the specific control indexes and number of controlled items are discussed in details. The present water pollution situation is clearly illustrated by the water pollution map and the water quality distribution diagram. A comparison between China??s present wastewater discharge standards and those in the USA and the EU are also presented to find the possibilities for future improvement.

Results

The historical origins, major challenges and future perspectives of China??s wastewater discharge standards are overviewed. The barriers and ongoing efforts for standards formulation and implementation are highlighted. Some suggestions for future endeavors are given.

Conclusions

China??s wastewater discharge standard system has seen significant improvement over the past decades, but it still has many defects and limitations. Nonetheless, unprecedented great efforts are underway to address all these challenges. More stringent standards and subsequently a cleaner water environment in China can be expected in the near future.  相似文献   

2.

Purpose

In the reservoir created in the reclaimed land in Isahaya Bay, Japan, Microcystis aeruginosa, which produces microcystins (MCs), bloomed every year, and the water with high levels of MCs in the reservoir has been often drained to Isahaya Bay to adjust the water level. The principal aims of this study are to clarify the water conditions suitable for blooming of M. aeruginosa in the reservoir, to follow the amount of distribution of MCs inside and outside the reservoir, and to discuss how blooming of M. aeruginosa is controlled in the reservoir and how MCs produced by Microcystis spread or accumulate in the aquatic environment.

Method

We monitored the water quality (temperature, salinity, dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus) in the reservoir with seasonal blooming of microalgae including phytoplankton and M. aeruginosa using the concentrations of chlorophyll ?? and MCs, respectively, and collected the surface sediment in the reservoir and the bay to determine the MC content using the ELISA method.

Result

M. aeruginosa bloomed in extremely low DIN conditions of the water in warm seasons (spring and late summer to autumn). The year-mean standing stock of MCs was approximately 34.5?kg in the water and 8.4?kg in the surface sediment in the reservoir. Approximately 64.5?kg of MCs was discharged with the effluent to the bay in a year.

Conclusion

Since a large amount of MCs always suspends in the water in the reservoir and it has been discharged to the bay, suspension-feeding animals are exposed most seriously to the high levels of MCs occurring in these areas. We need to pay attention to the danger of widespread dispersal of MCs and biological concentration of MCs by fish and clam inside and outside the reservoir.  相似文献   

3.

Purpose

The aim of this paper was to develop a new recreational water quality index (RWQI) as a tool to ensure the health of swimmers and to take practical decisions.

Methods

RWQI was elaborated with epidemiological data, and we carried out an exhaustive study of the different guidelines for recreational waters proposed by different organisations around the world. Different parameters were chosen, considering, as a priority, the swimmer??s contact and the possibility of ingestion of water during the recreational activity. Furthermore, rating curves were established for pH, chemical oxygen demand, nitrate, phosphate, detergents, enterococci, total coliforms, faecal coliforms and Escherichia coli.

Results and conclusions

The index was applied to the data set on water quality of the Potrero de los Funes River (San Luis, Argentina), generated during 2 years (2009?C2010). Following the RWQI values classification, most of the Potrero de los Funes water samples fell in the good quality range during the study period.  相似文献   

4.

Introduction

In order to reveal the potential relationships between body-size patterns of microzooplankton and environmental status, the spatial patterns in body-size spectra of ciliated zooplanktons were studied based on an annual dataset in a bay of the Yellow Sea, northern China.

Materials and methods

A total of 120 samples were collected at a depth of 1?m from each of five sampling sites with a spatial gradient of environmental stress from June 2007 to May 2008. A range of physico-chemical variables were measured synchronously for comparison with biotic parameters.

Results

The spatial body-size patterns of ciliated zooplankton represented significant differences among the five sites, and were significantly correlated with the changes of physico-chemical parameters, especially salinity, dissolved oxygen and nutrients. Two paired indices, the average body-size distinctness (AvBSD) and the variation in body-size distinctness (VarBSD), were proposed based on the trait resemblances among ciliate species in body-size pattern. The paired measures showed a clear decreasing trend of departure from the expected body-size spectra in response to water quality status.

Conclusion

These results suggest that the body-size pattern of ciliated zooplankton might be used as a potential indicator of marine water quality.  相似文献   

5.

Purpose

The performances of filter systems that use earthworms and plants, combined with earthworm eco-filter (EE) systems in treating synthetic domestic sewage (SDS) with different C/N ratios, were investigated for a 9-month period.

Methods

The effects of the combination of filters, earthworms, plants, as well as the combination of earthworms and plants on SDS nutrient removal efficiency were separately investigated to select the optimum system for treating SDS. The results of the current study could be used to determine how treatment performance responds to different C/N ratios and to explain and predict the performance of an operating EE system.

Results

EE systems with earthworms and plants (EP groups) consistently performed better than the other types of systems (CK, E, and P; that is, without earthworms and without plants, with earthworms and without plants, and without earthworms and with plants, respectively) under all C/N ratios. The highest removal efficiencies of chemical oxygen demand, total nitrogen, total phosphorus, and total organic carbon were achieved under C/N ratios of 6:1, 6:1, 6:1, and 9:1, respectively. The optimum nutrient removal efficiency was achieved at C/N?=?6, and the contribution order for nutrient removal was EP > P > E > CK.

Conclusions

Influent C/N ratios, the time of year, and the synergetic effects of earthworm behavior and microorganisms significantly affected nutrient removal efficiencies. Considering the removal of all nutrients, EE systems with plants and earthworms achieved optimum removal effects in July when the influent C/N ratio was controlled at 6. Appropriate control of carbon and nitrogen source concentrations permitted the achievement of optimal nutrient removal effects.  相似文献   

6.

Background,

aim, and scope Fujian reservoirs in southeast China are important water resources for economic and social sustainable development, although few have been studied previously. In recent years, growing population and increasing demands for water shifted the focus of many reservoirs from flood control and irrigation water to drinking water. However, most of them showed a rapid increase in the level of eutrophication, which is one of the most serious and challenging environmental problems. In this study, we investigated the algae community characteristics, trophic state, and eutrophication control strategies for typical subtropical reservoirs in southeast Fujian.

Materials and methods

Surface water samples were collected using polyvinyl chloride (PVC) plastic bottles from 11 Fujian reservoirs in summer 2010. Planktonic algae were investigated by optical microscopy. Water properties were determined according to the national standard methods.

Results and discussion

Shallow reservoirs generally have higher values of trophic state index (TSI) and appear to be more susceptible to anthropogenic disturbance than deeper reservoirs. A total of 129 taxa belonging to eight phyla (i.e., Bacillariophyta, Chlorophyta, Chrysophyta, Cryptophyta, Cyanophyta, Euglenophyta, Pyrrophyta, Xanthophyta) were observed and the most diverse groups were Chlorophyta (52 taxa), Cyanophyta (20 taxa), Euglenophyta (17 taxa), Chrysophyta (14 taxa). The dominant groups were Chlorophyta (40.58%), Cyanophyta (22.91%), Bacillariophyta (21.61%), Chrysophyta (6.91%). The species richness, abundance, diversity, and evenness of algae varied significantly between reservoirs. TSI results indicated that all 11 reservoirs were eutrophic, three of them were hypereutrophic, six were middle eutrophic, and two were light eutrophic. There was a strong positive correlation between algal diversity and TSI at P?4-N, NO x -N, TP, and chlorophyll a were significant environmental variables affecting the distribution of algae communities. The transparency and chlorophyll a were the strongest environmental factors in explaining the community data. Furthermore, the degradation of water quality associated with excess levels of nitrogen and phosphorus in Fujian reservoirs may be impacted by interactions among agriculture and urban factors. A watershed-based management strategy, especially phosphorus control, should be developed for drinking water source protection and sustainable reservoirs in the future.

Conclusion and recommendations

All investigated reservoirs were eutrophicated based on the comprehensive TSI values; thus, our results provided an early warning of water degradation in Fujian reservoirs. Furthermore, the trophic state plays an important role in shaping community structure and in determining species diversity of algae. Therefore, long-term and regular monitoring of Euglenophyta, Cyanophyta, TN, TP and chlorophyll a in reservoirs is urgently needed to further understand the future trend of eutrophication and to develop a watershed-based strategy to manage the Cyanophyta bloom hazards.  相似文献   

7.

Introduction

An aerobic denitrifier was isolated from the Hua-Jia-Chi pond in China and identified as Pseudomonas mendocina 3-7 (Genbank No. HQ285879). This isolated strain could express periplasmic nitrate reductase which is essential for aerobic denitrification occurred when the dissolved oxygen (DO) level maintains at 3?C10?mg?L?1.

Methods

To determine whether the ability of isolated strain is exhibited in the bioremediation of polluted drinking source water, the heterotrophic nitrification and aerobic denitrification characteristics of P. mendocina 3-7 under different cultural conditions such as oxygen level, nitrate and organic concentrations were studied from the nitrogenous balance in the paper.

Results and conclusions

By measuring the nitrogen balance in all experiments under different culture conditions, the removal of total organic carbon and ammonium was positively correlated with total nitrogen removal, especially under high substrate level. With substrate concentration decreasing, ammonium and nitrate removal occurred separately, and ammonium was completely utilized first under low substrate concentration. Compared to that under high substrate level, the specific growth rate of P. mendocina 3-7 was not low under the low substrate level and the pollutant removal efficiencies remained high, which implies the stronger nitrogen removal and acclimatization capacities of the strain in oligotrophic niches.  相似文献   

8.

Purpose

The characteristics of organics in sulphite pulp mill effluent and in the receiving environment of effluent discharge were investigated to assess the basis for the persistence or attenuation of colour.

Methods

Characterization of organics was conducted through determination of SUVA, specific colour, and molecular weight distribution of organics using high performance size exclusion chromatography and by solid-state 13?C cross polarization (CP) NMR. The characteristics of organics from mill wastewater before and after secondary aerobic treatment, followed by lime treatment and from the receiving environment, an enclosed brackish lake were compared. Changes in the character of organics in lake water over a period of 14?years were studied in the context of changes in mill processing and climate impacts.

Results

High colour in mill effluent and in receiving waters correlated with high SUVA and specific colour levels, high molecular weight range and aromatic content. Conversely, lake waters with low colour had UV absorbing compounds of much lower molecular weight range and low relative abundance of aromatic compounds. Attenuation of colour and changes in the character of organics in the receiving environment coincided with increased concentrations of metal cations.

Conclusions

These increased concentrations appear to be due to the effects of climate change, lake management and their presence in mill effluent, with subsequent discharge to the lake. Attenuation of colour was found to be predominantly through removal of high molecular weight aromatic compounds where the removal processes could be through adsorption and co-precipitation with divalent metals, as well as through dilution processes.  相似文献   

9.

Purpose

Perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and precursors and derivatives thereof have been employed as surfactants and anti-adhesives. PFOA and PFOS are environmentally persistent and the discharge of municipal waste waters is one of the principal routes of these compounds into the aquatic environment. In a previous study, the concentrations of PFOA and PFOS in grab samples collected from the waste water treatment plant (WWTP) of Bayreuth, a city of 72,000 inhabitants in Bavaria, Germany, during two periods showed considerable variability. For a better estimate of average mass flows, the surfactants were monitored (five samplings) from 16 March to 18 May 2007. In a second campaign, river water receiving the WWTP effluent was sampled twice a day for five consecutive days.

Methods

Quantitative analysis was done by stable-isotope dilution, pre-cleaning, and pre-concentration by solid-phase extraction, and liquid chromatography followed by electrospray ionization/tandem mass spectrometry.

Results

The mass flows of PFOA and PFOS through the WWTP were determined. PFOA is fully discharged into the river, while about half of PFOS is retained in the sewage sludge. The average daily mass load of the river Roter Main by the WWTP of Bayreuth is about 1.2?±?0.5 g PFOA and 5?±?2 g PFOS, with variations of up to 140% within one day.

Conclusion

Overall, the total annual release to the rivers of Germany may be in the range of several hundred kilograms of PFOA and several tons of PFOS.  相似文献   

10.

Purpose

Bacterial community structure and the chemical components in aerosols caused by rotating brushes in an Orbal oxidation ditch were assessed in a Beijing municipal wastewater treatment plant.

Methods

Air samples were collected at different distances from the aerosol-generating rotating brushes. Molecular culture-independent methods were used to characterize the community structure of the airborne bacteria in each sample regardless of cell culturability. A clone library of 16S rDNA directly amplified from air DNA of each sample was constructed and sequenced to analyze the community composition and diversity. Insoluble particles and water-soluble ions emitted with microorganisms in aerosols were analysis by a scanning electron microscope together with energy dispersive X-ray spectroscopy and ion chromatogram analyzer.

Results

In total, most of the identified bacteria were Proteobacteria. The majority of sequences near the rotating brushes (the main source of the bioaerosols) were Proteobacteria (62.97 %) with ??-(18.52 %) and ??-(44.45?%) subgroups and Bacteroidetes (29.63 %). Complex patterns were observed for each sampling location, suggesting a highly diverse community structure, comparable to that found in water in the Orbal oxidation ditch. Accompany with microorganisms, 46.36???g/m3 of SO 4 2? , 29.35???g/m3 of Cl?, 21.51???g/m3 of NO 3 ? , 19.76???g/m3 of NH 4 + , 11.42???g/m3 of PO 4 3? , 6.18???g/m3 of NO 2 ? , and elements of Mg, Cl, K, Na, Fe, S, and P were detected from the air near the aerosols source.

Conclusions

Differences in the structure of the bacterial communities and chemical components in the aerosols observed between sampling sites indicated important site-related variability. The composition of microorganisms in water was one of the most important sources of bacterial communities in bioaerosols. Chemical components in bioaerosols may provide a media for airborne microorganism attachment, as well as a suitable microenvironment for their growth and survival in the air. This study will be benefit for the formulation of pollution standards, especially for aerosols, that take into account plant workers?? health.  相似文献   

11.

Introduction

The paper analyses the environment pollution state in different case studies of economic activities (i.e. co-generation electric and thermal power production, iron profile manufacturing, cement processing, waste landfilling, and wood furniture manufacturing), evaluating mainly the environmental cumulative impacts (e.g. cumulative impact against the health of the environment and different life forms).

Materials and methods

The status of the environment (air, water resources, soil, and noise) is analysed with respect to discharges such as gaseous discharges in the air, final effluents discharged in natural receiving basins or sewerage system, and discharges onto the soil together with the principal pollutants expressed by different environmental indicators corresponding to each specific productive activity. The alternative methodology of global pollution index (I GP * ) for quantification of environmental impacts is applied.

Results and discussion

Environmental data analysis permits the identification of potential impact, prediction of significant impact, and evaluation of cumulative impact on a commensurate scale by evaluation scores (ESi) for discharge quality, and global effect to the environment pollution state by calculation of the global pollution index (I GP * ).

Conclusions

The I GP * values for each productive unit (i.e. 1.664?C2.414) correspond to an ??environment modified by industrial/economic activity within admissible limits, having potential of generating discomfort effects??. The evaluation results are significant in view of future development of each productive unit and sustain the economic production in terms of environment protection with respect to a preventive environment protection scheme and continuous measures of pollution control.  相似文献   

12.

Introduction

Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental subsurface flow, gravel-based constructed wetlands (CWs) receiving untreated recirculating aquaculture system wastewater.

Materials and methods

The hydraulic loading rate was 3.75 cm day?1. Many of the monitored water quality parameters (biological oxygen demand [BOD], total suspended solids [TSS], total phosphorus [TP], total nitrogen [TN], total ammoniacal nitrogen [TAN], nitrate nitrogen [NO3], and Escherichia coli) were removed efficiently by the CWs, to the extent that the CW effluent was suitable for use on human food crops grown for raw produce consumption under Victorian state regulations and also suitable for reuse within aquaculture systems.

Results and discussion

The BOD, TSS, TP, TN, TAN, and E. coli removal in the A. donax and P. australis beds was 94%, 67%, 96%, 97%, 99.6%, and effectively 100% and 95%, 87%, 95%, 98%, 99.7%, and effectively 100%, respectively, with no significant difference (p?>?0.007) in performance between the A. donax and P. australis CWs. In this study, as expected, the aboveground yield of A. donax top growth (stems + leaves) (15.0?±?3.4 kg wet weight) was considerably more than the P. australis beds (7.4?±?2.8 kg wet weight). The standing crop produced in this short (14-week) trial equates to an estimated 125 and 77 t ?ha?1 year?1 biomass (dry weight) for A. donax and P. australis, respectively (assuming that plant growth is similar across a 250-day (September–April) growing season and a single-cut, annual harvest).

Conclusion

The similarity of the performance of the A. donax- and P. australis-planted beds indicates that either may be used in horizontal subsurface flow wetlands treating aquaculture wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilization of the energy-rich biomass produced.
  相似文献   

13.

Background, aim, and scope

This study demonstrated the adsorption capacity of microcystin-LR (MC-LR) onto sediment samples collected from different reservoirs (Emerald and Jade reservoirs) and rivers (Dongshan, Erhjen, and Wukai rivers) in Taiwan to investigate the fate, transport behavior, and photodegradation of MC-LR.

Main features

Langmuir adsorption and photodegradation studies were carried out in the laboratory and tested the capability of sediments for MC-LR adsorption. These data suggested that sediments play a crucial role in microcystins degradation in aquatic systems.

Results and discussion

The results of batch experiments revealed that the adsorption of MC-LR varied significantly with texture, pH, and organic matter content of sediments. Silty and clay textures of the samples were associated with larger content of organic matter, and they displayed the enhanced MC-LR adsorption. Low pH sediment showed increased adsorption of MC-LR. The effective photodegradation of MC-LR (1.6 ??g/mL) was achieved within 60 min under 254 nm light irradiation.

Conclusion

A comparative study of adsorption capacity of all sediment samples was carried out and discussed with respect to different aspects. Among all, sediments collected from Jade reservoir showed enhanced MC-LR adsorption (11.86 ??g/g) due to favored textural properties (BET surface area = 20.24 m2/g and pore volume = 80.70 nm).

Perspectives

These data provide important information that may be applied to management strategies for improvement of water quality in reservoirs and rivers and other water bodies in Taiwan.  相似文献   

14.
15.

Purpose

Fish farming in barrage pond is a rearing system commonly used worldwide. Obtaining good water quality is essential to improve sustainability of these ecosystems, both for health of fish consumers and environmental considerations. However, ponds are often located in agricultural landscape, but few study reports impact of pesticide pressure on these ecosystems. This study characterizes five sites in Northeastern France. This work establishes an initial framework for pesticide monitoring with the aim to improve understanding of the fate of pesticides in ponds.

Methods

This framework is based on surveys indicating managements and Geographical Information System (GIS) for five ponds and their watersheds (sites: C-0, C-25, C-45, C-75 and C-85) and completes with some analysis of a large spectrum of pesticide residues in surface waters.

Results

Watersheds show a gradient of crop proportion ranging from 0% to 82% of the watershed area, mainly rapeseed, wheat, barley and maize. Ponds were representative of local Northeastern France management. Many pesticides, and also nutrients, were measured in water with concentrations varying between sites and seasons. The sum of quantified molecules ranged from 0.17 ??g/l for site C-0 (March) to 8.81 ??g/l for site C-25 (October). Concentrations of metaldehyde, quinmerac, isoproturon and bentazon were sometimes above 1 ??g/l.

Conclusions

There is a strong connection between pond and watershed, due to water supply throughout the fish production cycle. Sites with small pond/big watershed are the most exposed to acute contamination a few days after spraying because water discharges are not diluted.  相似文献   

16.

Purpose

Psychoactive compounds??meprobamate, pyrithyldione, primidone, and its metabolites, phenobarbital, and phenylethylmalonamide??were detected in groundwater within the catchment area of a drinking water treatment plant located downgradient of a former sewage farm in Berlin, Germany. The aim of this study was to investigate the distribution of the psychoactive compounds in anoxic groundwater and to assess the risk of drinking water contamination. Groundwater age was determined to achieve a better understanding of present hydrogeological conditions.

Methods

A large number of observation and production wells were sampled. Samples were analyzed using solid-phase extraction and ultrahigh-performance liquid chromatography?Ctandem mass spectrometry. Groundwater age was estimated using the helium?Ctritium (3He?C3H) dating method.

Results

Concentrations of psychoactive compounds up to 1???g/L were encountered in the contamination plume. Generally, concentrations of phenobarbital and meprobamate were the highest. Elevated concentrations of the analytes were also detected in raw water from abstraction wells located approximately 2.5?km downgradient of the former sewage farm. Concentrations in the final drinking water were below the limit of quantification owing to dilution. The age of shallow groundwater samples ranged from years to a decade, whereas groundwater was up to four decades old at 40?m below ground. Concentrations of the compounds increased with groundwater age.

Conclusions

Elevated concentrations of psychoactive drugs indicate a strong persistence of these compounds in the environment under anoxic aquifer conditions. Results suggest that the heritage of sewage irrigation will affect raw water quality in the area for decades. Therefore, further monitoring of raw and final drinking water is recommended to ensure that contaminant concentrations remain below the health-based precautionary value.  相似文献   

17.

Purpose

The role of water in the transmission of infectious diseases is well defined; it may act as a reservoir of different types of pathogens. Enteric viruses can survive and persist for a long time in water, maintaining infectivity in many instances. This suggests the need to include virus detection in the evaluation of the microbiological quality of waters.

Methods

In this study, enteric viruses (enteroviruses and hepatitis A virus (HAV)) were investigated by RT-PCR and coliphages (known as indicators of viral contamination) were enumerated with the double-layer technique agar in effluents and sewage sludge from three Tunisian wastewater treatment plants.

Results and discussion

The molecular detection of enteric viruses revealed 7.7% of positive activated sludge samples for enteroviruses. None of the samples was positive for HAV. Molecular virus detection threshold was estimated to be 103?PFU/100?ml. All samples contained high concentrations of coliphages except those of dry sludge. Reductions in the concentrations of bacteriophages attained by the wastewater treatment plants are of the order of magnitude as reductions described elsewhere. Peak concentrations in raw wastewater were associated with winter rains and suspended materials rate in analysed samples. Our data which is the first in North Africa showed that similar trends of coliphages distribution to other studies in other countries.

Conclusion

No clear correlation between studied enteric viruses and coliphages concentration was proved. Coliphages abundance in collected samples should raise concerns about human enteric viruses transmission as these residues are reused in agricultural fields.  相似文献   

18.

Purpose

??-Hexachlorocyclohexane (HCH), ??-HCH, and lindane (??-HCH) were listed as persistent organic pollutants by the Stockholm Convention in 2009 and hence must be phased out and their wastes/stockpiles eliminated. At the last operating lindane manufacturing unit, we conducted a preliminary evaluation of HCH contamination levels in soil and water samples collected around the production area and the vicinity of a major dumpsite to inform the design of processes for an appropriate implementation of the Convention.

Methods

Soil and water samples on and around the production site and a major waste dumpsite were measured for HCH levels.

Results

All soil samples taken at the lindane production facility and dumpsite and in their vicinity were contaminated with an isomer pattern characteristic of HCH production waste. At the dumpsite surface samples contained up to 450?g?kg?1 ?? HCH suggesting that the waste HCH isomers were simply dumped at this location. Ground water in the vicinity and river water was found to be contaminated with 0.2 to 0.4?mg?l?1 of HCH waste isomers. The total quantity of deposited HCH wastes from the lindane production unit was estimated at between 36,000 and 54,000?t.

Conclusions

The contamination levels in ground and river water suggest significant run-off from the dumped HCH wastes and contamination of drinking water resources. The extent of dumping urgently needs to be assessed regarding the risks to human and ecosystem health. A plan for securing the waste isomers needs to be developed and implemented together with a plan for their final elimination. As part of the assessment, any polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) generated during HCH recycling operations need to be monitored.  相似文献   

19.

Purpose

The main goals of this study were to investigate (1) the behavior of microbial communities in response to low-dose bioavailable anthracene addition in lightly contaminated sediment from Bizerte Lagoon and (2) the effects of bioremediation treatments on microbial biomass, activity, and community structure.

Methods

Sediment microcosms amended with 1 ppm anthracene were incubated in triplicate during 30 days. Biostimulation (addition of nitrogen and phosphorus fertilizer) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation treatments. Bacterial biomass was estimated using flow cytometry. Sediment oxygen consumption was measured with oxygen microelectrodes. Bacterial community structure was assessed by molecular fingerprints (terminal restriction fragment length polymorphism; T-RFLP) analysis.

Results

Anthracene contamination resulted in a significant reduction of bacterial abundance with an impact on cell integrity. Concomitantly, sediment oxygen consumption was strongly inhibited. Correspondence analysis on T-RFLP data indicated that bacterial community structures from anthracene-contaminated microcosms were different from that of the control. Interestingly, the changes observed in microbial biomass, structure, and activities as a result of anthracene contamination were not alleviated even with the use of biostimulation and combination of biostimulation and bioaugmentation strategy for anthracene bioremediation. Nevertheless, both treatment methods resulted in different community structures relative to the contaminated and control microcosms with the appearance of distinct populations.

Conclusion

Anthracene spiking severely affected microbial communities, suggesting dominance of nontolerant populations in this lightly-contaminated sediment. Although biostimulation and/or bioaugmentation treatments did not alleviate the anthracene toxic effects, the changes observed in microbial population and structure suggest that the proposed treatments might be promising to promote bacterial growth. Further works are still required to propose a more efficient strategy to stimulate biodegradation that takes into account the complex interactions between species for resource access.  相似文献   

20.
Algal bloom could drastically influence the nutrient cycling in lakes. To understand how the internal nutrient release responds to algal bloom decay, water and sediment columns were sampled at 22 sites from four distinct regions of China’s eutrophic Lake Taihu and incubated in the laboratory to examine the influence of massive algal bloom decay on nutrient release from sediment. The column experiment involved three treatments: (1) water and sediment (WS); (2) water and algal bloom (WA); and (3) water, sediment, and algal bloom (WSA). Concentrations of dissolved oxygen (DO), total nitrogen (TN), total phosphorus (TP), ammonium (NH 4 + -N), and orthophosphate (PO 4 3? -P) were recorded during incubation. The decay of algal material caused a more rapid decrease in DO than in the algae-free controls and led to significant increases in NH 4 + -N and PO 4 3? -P in the water. The presence of algae during the incubation had a regionally variable effect on sediment nutrient profiles. In the absence of decaying algae (treatment WS), sediment nutrient concentrations decreased during the incubation. In the presence of blooms (WSA), sediments from the river mouth released P to the overlying water, while sediments from other regions absorbed surplus P from the water. This experiment showed that large-scale algal decay will dramatically affect nutrient cycling at the sediment–water interface and would potentially transfer the function of sediment as “container” or “supplier” in Taihu, although oxygen exchange with atmosphere in lake water was stronger than in columns. The magnitude of the effect depends on the physical–chemical character of the sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号