首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compostability of starch–CaCO3 disposable packaging was examined in a source-separated municipal solid waste (MSW) composting facility located in East Hampton, NY. Source-separated MSW:starch–CaCO3 container mixtures of 0 (control), 5, and 20% (by volume) were prepared as feedstock for composting. Compost samples were collected weekly or biweekly during the composting process and examined for fragments of the starch–CaCO3 containers. Changes in compost quality due to the presence of starch–CaCO3 containers were assessed by measuring the nutrient and metal content of the three resultant MSW:starch–CaCO3 composts. Finally, plant growth studies were conducted to examine the composts for possible plant growth inhibition due to the deterioration of the starch–CaCO3 containers. Results showed that portions of the starch–CaCO3 containers were not identified in any of the 5 and 20% sieved and characterized compost fractions > 1.3 cm following 1–3 weeks of composting. Mechanical agitation of the waste along with optimum composting conditions were sufficient to initiate the rapid degradation of the starch–CaCO3 composites. Degradation of starch–CaCO3 containers did not affect compost nutrient and trace element content. Grass biomass measurements were performed once weekly over 28 days for grass grown in control (0%), 5%, and 20% starch–CaCO3-containing compost:soil mixtures. Significant differences in grass biomass for these compost:soil mixtures were measured only for the 0 and 20% starch–CaCO3-containing compost:soil mixtures at 28 days (9.07 vs 11.05 g, respectively; P = 0.046).  相似文献   

2.
Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical–chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment.  相似文献   

3.
The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60 °C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (EC), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., EC = 10% and 20%). It was found that the larger the EC, the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions.  相似文献   

4.
The composting process of different organic wastes both in laboratory and on a large-scale was characterized using CIELAB color variables to evaluate compost stability for the better application in agriculture. The time courses of the CIELAB variables of composting materials were determined directly from the bottom of a glass petri dish filled with dried and ground samples using a Minolta Color Reader (CR-13) calibrated with clean empty petri dishes placed on a white tile. To compare the proposed method with conventional methods, the same materials were also evaluated using commonly used compost stability evaluation indices. Most of the CIELAB variables of a compost made from a mixture of green tea waste and rice bran reached a plateau after 84 days of composting and showed strong relationships with the commonly used compost stability evaluation indices. The time needed for CIELAB variables, especially the L*and b* values, to stabilize at large-scale composting plants of cattle litter, farmyard manure, kitchen garbage and bark compost, were more or less similar to the times of maturation evaluated by the respective compost producers. The CIELAB color variable offers a new, simple, rapid and inexpensive means of evaluating compost stability and its quality prior to agricultural use.  相似文献   

5.
A research project was carried out to evaluate toxicological effects of compost addition to agricultural soil using the earthworm Eisenia foetida (Annellida) as a representative organism of the soil fauna. Moreover, the correlation between compost biochemical stabilization and toxicity at different phases of the composting process was assessed. Samples were collected from three composting plants at three different maturation levels (beginning of the composting process, intermediate compost after bio-oxidation, and mature refined compost). Two tests were performed: a standard chronic solid-phase test and an acute solid-phase test (developed originally by the authors). In the first test, the measured end-points were mortality, growth and reproduction; while in the second test earthworms’ behavior was evaluated. The chosen compost concentrations in soil ranged from 2.5 to 100 %, with the aim of obtaining the toxicological parameters (LC50) and to mimic real agricultural dosages for the lower concentrations. Results indicated an increase in compost toxicity with greater compost concentrations; in particular, agricultural compost dosage below 10 % showed no toxicity. Moreover, toxicity did not decrease during composting; intermediate compost showed the highest LC50 values. As a consequence, no correlation was ascertained between the results of ecotoxicological analysis and waste biochemical stability parameters during the composting process.  相似文献   

6.

This study presents the results obtained in compostability tests of organic fraction of municipal solid waste (OFMSW) digestate. The final aim was to obtain mature compost without phytotoxic effects. For the evaluation of the composting process, a novel parameter describing the performance of the composting process, the relative heat generation standardized with the initial volatile solid content (RHGVS0), was defined and evaluated at laboratory-scale. From these laboratory-scale test, the optimum operational conditions were obtained, a mixing ratio (v/v) of 1:1:0 (bulking agent:digestate:co-substrate) and with 15% of mature compost as inoculum. Subsequently, these optimum operational conditions were applied in the active phase of the composting pilot-scale reactor. The active composting stage took 7 days, subsequently a curing phase of 60 days was carried out at ambient conditions. After 30 days of curing, the mature compost showed a specific oxygen uptake rate (SOUR) of 0.14 mg O2/g VS·h, a germination index (GI) of 99.63% and a low volatile fatty acids (VFA) concentration (41.3 AcH mg/kgdm), being indicative of the good compost stability and maturity of the compost. The very good quality of the final compost obtained indicated that the RHGVS0 accurately describes the performance of the composting process.

  相似文献   

7.
A new index for evaluating compost maturity was developed based on a germination test of Komatsuna seeds using water extract from compost. Several compost samples were collected from a kitchen-garbage composting plant to determine an index to evaluate compost maturity. Firstly, some extraction conditions for extracting compost ingredients with water were evaluated using the time course of total organic carbon concentration in water extract. The water temperature of 60?°C, periodic mixing, and extraction period >1 were selected. Secondly, applying these conditions, the germination test was performed using the water extract solutions at several dilution ratios. The relationship between the germination rate and the dilution ratio was expressed using a logistic regression curve. The dilution ratio to give a germination rate of 0.5, defined as DG50, was calculated with the parameters of the curve. Compared with other maturity indices, DG50 was the most effective. Moreover, it has a unique feature in that maturity is quantified even for the compost from which water extract results in a germination rate of 0. This feature can be used to compare the maturity of different kinds of composts and quantify the change in the levels of inhibitory substances in a composting process.  相似文献   

8.
Small scale co-composting of faecal matter from dry toilet systems with shredded plant material and food waste was investigated in respect to heat development and deactivation of faecal indicators under tropical semiarid conditions. Open (uncovered) co-composting of faecal matter with shredded plant material alone did not generate temperatures high enough (<55 °C) to reduce the indicators sufficiently. The addition of food waste and confinement in chambers, built of concrete bricks and wooden boards, improved the composting process significantly. Under these conditions peak temperatures of up to 70 °C were achieved and temperatures above 55 °C were maintained over 2 weeks. This temperature and time is sufficient to comply with international composting regulations. The reduction of Escherichia coli, Enterococcus faecalis and Salmonella senftenberg in test containment systems placed in the core of the compost piles was very efficient, exceeding 5 log10-units in all cases, but recolonisation from the cooler outer layers appeared to interfere with the sanitisation efficiency of the substrate itself. The addition of a stabilisation period by extending the composting process to over 4 months ensured that the load of E. coli was reduced to less than 103 cfu?g and salmonella were undetectable.  相似文献   

9.
The effect of land application of biosolids on an agricultural soil was studied in a 2-month incubation experiment. The soil microbial biomass and the availability of heavy metals in the soil was monitored after the application of four different composting mixtures of sewage sludge and cotton waste, at different stages of composting. Land application caused an increase of both size and activity of soil microbial biomass that was related to the stabilization degree of the composting mixture. Sewage sludge stabilization through composting reduced the perturbance of the soil microbial biomass. At the end of the experiment, the size and the activity of the soil microbial biomass following the addition of untreated sewage sludge were twice those developed with mature compost. For the mature compost, the soil microbial biomass recovered its original equilibrium status (defined as the specific respiration activity, qCO2) after 18 days of incubation, whereas the soil amended with less stabilized materials did not recover equilibrium even after the two-month incubation period. The stabilization degree of the added materials did not affect the availability of Zn, Ni, Pb, Cu, Cr and Cd in the soil in the low heavy metal content of the sewage sludge studied. Stabilization of organic wastes before soil application is advisable for the lower perturbation of soil equilibria status and the more efficient C mineralization.  相似文献   

10.
Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment.Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.  相似文献   

11.
Although several reports are available concerning the composition and dynamics of the microflora during the composting of municipal solid wastes, little is known about the microbial diversity during the composting of agro-industrial refuse. For this reason, the first parts of this study included the quantification of microbial generic groups and of the main functional groups of C and N cycle during composting of agro-industrial refuse. After a generalized decrease observed during the initial phases, a new bacterial growth was observed in the final phase of the process. Ammonifiers and (N2)-fixing aerobic groups predominated outside of the piles whereas, nitrate-reducing group increased inside the piles during the first 23 days of composting. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), showed an opposite trend of growth since ammonia oxidation decreased with the increase of the nitrite oxidation activity. Pectinolytics, amylolytics and aerobic cellulolytic were present in greater quantities and showed an upward trend in both the internal and external part of the heaps.Several free-living (N2)-fixing bacteria were molecularly identify as belonging especially to uncommon genera of nitrogen-fixing bacteria as Stenotrophomonas, Xanthomonas, Pseudomonas, Klebsiella, Alcaligenes, Achromobacter and Caulobacter. They were investigated for their ability to fix atmospheric nitrogen to employ as improvers of quality of compost. Some strains of Azotobacter chrococcum and Azotobacter salinestris were also tested. When different diazotrophic bacterial species were added in compost, the increase of total N ranged from 16% to 27% depending on the selected microbial strain being used. Such microorganisms may be used alone or in mixtures to provide an allocation of plant growth promoting rhizobacteria in soil.  相似文献   

12.
The effect of twelve weeks of composting on the mobility and bioavailability of cadmium in six composts containing sewage sludge, wood chips and grass was studied, along with the cadmium immobilization capacity of compost. Two different soils were used and Cd accumulation measured in above-ground oat biomass (Avena sativa L.). Increasing pH appears to be an important cause of the observed decreases in available cadmium through the composting process. A pot experiment was performed with two different amounts of compost (9.6 and 28.8 g per kg of soil) added into Fluvisol with total Cd 0.255 mg kg?1, and contaminated Cambisol with total Cd 6.16 mg kg?1. Decrease of extractable Cd (0.01 mol l?1 CaCl2) was found in both soils after compost application. The higher amount of compost immobilized an exchangeable portion of Cd (0.11 mol l?1 CH3COOH extractable) in contaminated Cambisol unlike in light Fluvisol. The addition of a low amount of compost decreased the content of Cd in associated above-ground oat biomass grown in both soils, while a high amount of compost decreased the Cd content in oats only in the Cambisol.  相似文献   

13.
In-vessel composting of household wastes   总被引:1,自引:0,他引:1  
The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for a period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes.  相似文献   

14.
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.  相似文献   

15.
As part of a Controlled Ecological Life Support System (CELSS) for long term human travel and habitation in space, the resources in solid waste may be regenerated through the microbiological process of composting. This would release CO2 for photosynthetic uptake while transforming the waste to a smaller volume and weight of stabilized and sanitized compost. To continue the biodegradation and complete the cycling of nutrients, the compost would be incorporated into soil used in growing food crops. To minimize the weight and volume of the composting facility, the rate of the transformation should be maximized. This is realizable through ventilative removal of heat in reference to a biologically favorable temperature ceiling, and maintenance of a thoroughly oxygenated state. A preliminary design for a composting system for use in a spacecraft and/or permanent space station is proposed.  相似文献   

16.
An attempt was made to recycle waste biomass and mineral powder (waste mica) as an alternative source of potassium (K) through composting technology. Two different waste biomass, isabgol straw and palmarosa distillation waste along with two levels of waste mica (2 and 4% as K) were used for preparation of enriched composts. A notable decrease of C:N ratio was observed at the end of the composting (150 days) as an indicator of compost maturity. The mature composts were evaluated for K-supplying capacity through laboratory leaching and soil incubation study. Significantly higher water-soluble K released initially followed by a sharp decrease up to 21 days of leaching thereafter gradually decreased up to 35 days of leaching. Water-soluble K was released from K-enriched (mica charged) compost significantly higher than the ordinary compost throughout the leaching period. Soil incubation study also revealed that application of K-enriched compost greatly improved the available K (water soluble and exchangeable) pools in K-deficient soil which indicated that a considerable amount of K releases during composting. Therefore, K-enriched compost could be an effective alternative of costly commercial K fertilizer and eco-friendly approach to utilize low-cost waste mineral powder and plant residue.  相似文献   

17.
A cross-linked polyacrylate polymer, referred to as absorbent gelling material (AGM), has been developed for use in hygiene paper products, such as infant diapers (nappies). The fate and effects of this polymer were studied in laboratory models of landfill and aerobic composting. Radiolabelled (14C) AGM was used to facilitate determination of fate and mass balance. Tests were conducted in 1201 reactors containing a mixture of solid waste and compost or solid waste only, and panty diaper pads. Controlled temperature and leachate recycle were used to accelerate the biological processes. AGM caused no adverse effects and most of the material remained associated with the diaper pad and surrounding waste. Very little AGM (less than 1%) biodegraded to CO2/CH4 under landfill conditions, while 2-4% appeared in leachate. The leachate was highly biodegradable aerobically. More of the AGM (6.4%) biodegraded to CO2/CH4 under aerobic composting conditions, while less than 1% appeared in leachate.  相似文献   

18.
A closed incubation system was developed for laboratory simulation of composting conditions at the interior of a large compost pile. A conductive heat flux control system (CHFC) was used to adjust the temperature of the internal wall to that of the compost center and compensate for heat loss. Insulated small vessels (400 cm3) controlled by the CHFC system were compared with similar vessels maintained at 30°C (mesophilic) and 55°C (thermophilic), and with large vessels (10 000 cm3) with and without the CHFC. Compost temperature rose rapidly to a maximum within 2-4 days, then gradually decreased. In mesophilic treatments (no CHFC), temperature at the matrix center increased to a maximum of 36°C in the small vessel and 50°C in the large vessel, while temperature in both vessels reached 50°C with the CHFC. Microbial activity was maintained by allowing compost to self-heat and controlling temperature externally with the CHFC. Higher temperatures were sustained for longer periods in CHFC vessels than in vessels without the CHFC. Periodic mixing of the compost matrix increased temperature and CO2 evolution. Small vessels were successfully used in laboratory simulation of field-scale composting of a soil/organic matrix containing TNT and RDX munitions. The small vessel system reduced subsample error in compost monitoring from that of the large vessels. The CHFC has particular utility in research requiring expensive chemicals or hazardous substances.  相似文献   

19.
Biodegradability under composting conditions is assessed by test methods, such as ASTM D 5338-92, based on the measurement of CO2 released by test materials when mixed with mature compost and maintained in a controlled composting environment. However, in real composting, biodegradation occurs in fresh waste. To clarify this point, the biodegradation of paper and of a starch-based biodegradable thermoplastic material, Mater-Bi ZI01U, was followed by measuring the weight loss of samples introduced either into a mature compost or into a synthetic waste. The weight loss in mature compost was higher at the beginning but tended to decrease; in synthetic waste a first lag phase was followed by an exponential phase. Complete degradation of paper was noticed simultaneously in the two substrates (after 25 days). The bulkier Mater-Bi samples were fully degraded after 20 days in fresh waste, but after 45 days in mature compost. Therefore, the test methods using mature compost as a substrate can possibly underestimate the biodegradation rate occurring in fresh waste, i.e., in real composting plants, and have to be considered as conservative test methods. The test procedure described in this paper seems very suitable as a screening method to verify the compostability of plastic materials in a composting environment.  相似文献   

20.
Gaseous emissions are an important problem in municipal solid waste (MSW) treatment plants. The sources points of emissions considered in the present work are: fresh compost, mature compost, landfill leaks and leachate ponds. Hydrogen sulphide, ammonia and volatile organic compounds (VOCs) were analysed in the emissions from these sources. Hydrogen sulphide and ammonia were important contributors to the total emission volume. Landfill leaks are significant source points of emissions of H2S; the average concentration of H2S in biogas from the landfill leaks is around 1700 ppmv. The fresh composting site was also an important contributor of H2S to the total emission volume; its concentration varied between 3.2 and 1.7 ppmv and a decrease with time was observed. The mature composting site showed a reduction of H2S concentration (<0.1 ppmv). Leachate pond showed a low concentration of H2S (in order of ppbv). Regarding NH3, composting sites and landfill leaks are notable source points of emissions (composting sites varied around 30–600 ppmv; biogas from landfill leaks varied from 160 to 640 ppmv).Regarding VOCs, the main compounds were: limonene, p-cymene, pinene, cyclohexane, reaching concentrations around 0.2–4.3 ppmv.H2S/NH3, limonene/p-cymene, limonene/cyclohexane ratios can be useful for analysing and identifying the emission sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号