首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional numerical model of the physical and chemical behavior and fate of spilled oil has been coupled to a model of oil spill response actions. This coupled system of models for Oil Spill Contingency and Response (OSCAR), provides a tool for quantitative, objective assessment of alternative oil spill response strategies. Criteria for response effectiveness can be either physical (‘How much oil comes ashore?’ or ‘How much oil have we recovered?’) or biological (‘How many biologically sensitive areas were affected?’ or ‘What exposures will fish eggs and larvae experience in the water column?’). The oil spill combat module in the simulator represents individual sets of equipment, with capabilities and deployment strategies being specified explicitly by the user. The coupling to the oil spill model allows the mass balance of the spill to be affected appropriately in space and time by the cleanup operation as the simulation proceeds. An example application is described to demonstrate system capabilities, which include evaluation of the potential for both surface and subsurface environmental effects. This quantitative, objective approach to analysis of alternative response strategies provides a useful tool for designing more optimal, functional, rational, and cost-effective oil spill contingency solutions for offshore platforms, and coastal terminals and refineries.  相似文献   

2.
This paper discusses the changes in spilled oil properties over time and how these changes affect differential density separation. It presents methods to improve differential density, and operational effectiveness when oil-water separation is incorporated in a recovery system. Separators function because of the difference in density between oil and seawater. As an oil weathers this difference decreases, because the oil density increases as the lighter components evaporate. The density also increases as the oil incorporates water droplets to form a water-in-oil emulsion. These changes occur simultaneously during weathering and reduce the effectiveness of separators. Today, the state-of-the-art technologies have limited capabilities for separating spilled marine oil that has weathered.For separation of emulsified water in an emulsion, the viscosity of the oil will have a significant impact on drag forces, reducing the effect of gravity or centrifugal separation. Since water content in an emulsion greatly increases the clean up volume (which can contain as much as two to five times as much water as the volume of recovered oil), it is equally important to remove water from an emulsion as to remove free water recovered owing to low skimmer effectiveness. Removal of both free water and water from an emulsion, has the potential to increase effective skimming time, recovery effectiveness and capacity, and facilitate waste handling and disposal. Therefore, effective oil and water separation in marine oil spill clean-up operations may be a more critical process than credited because it can mean that fewer resources are needed to clean up an oil spill with subsequent effects on capital investment and basic stand-by and operating costs for a spill response organization.A large increase in continuous skimming time and recovery has been demonstrated for total water (free and emulsified water) separation. Assuming a 200 m3 storage tank, 100 m3 h−1 skimmer capacity, 25% skimmer effectiveness, and 80% water content in the emulsion, the time of continuous operation (before discharge of oil residue is needed), increases from 2 to 40 h and recovery of oil residue from 10 to 200 m3.Use of emulsion breakers to enhance and accelerate the separation process may, in some cases, be a rapid and cost effective method to separate crude oil emulsions. Decrease of water content in an emulsion, by heating or use of emulsion breakers and subsequent reduction in viscosity, may improve pumpability, reduce transfer and discharge time, and can reduce oily waste handling, and disposal costs by a factor of 10. However, effective use of emulsion breakers is dependant on the effectiveness of the product, oil properties, application methods and time of application after a spill.  相似文献   

3.
In situ burning is an oil spill response technique or tool that involves the controlled ignition and burning of the oil at or near the spill site on the surface of the water or in a marsh (see Lindau et al., this volume). Although controversial, burning has been shown on several recent occasions to be an appropriate oil spill countermeasure. When used early in a spill before the oil weathers and releases its volatile components, burning can remove oil from the waters surface very efficiently and at very high rates. Removal efficiencies for thick slicks can easily exceed 95% (Advanced In Situ Burn Course, Spiltec, Woodinville, WA, 1997). In situ burning offers a logistically simple, rapid, inexpensive and if controlled a relatively safe means for reducing the environmental impacts of an oil spill. Because burning rapidly changes large quantities of oil into its primary combustion products (water and carbon dioxide), the need for collection, storage, transport and disposal of recovered material is greatly reduced. The use of towed fire containment boom to capture, thicken and isolate a portion of a spill, followed by ignition, is far less complex than the operations involved in mechanical recovery, transfer, storage, treatment and disposal (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994).However, there is a limited window-of-opportunity (or time period of effectiveness) to conduct successful burn operations. The type of oil spilled, prevailing meteorological and oceanographic (environmental) conditions and the time it takes for the oil to emulsify define the window (see Buist, this volume and Nordvik et al., this volume). Once spilled, oil begins to form a stable emulsion: when the water content exceeds 25% most slicks are unignitable. In situ burning is being viewed with renewed interest as a response tool in high latitude waters where other techniques may not be possible or advisable due to the physical environment (extreme low temperatures, ice-infested waters), or the remoteness of the impacted area. Additionally, the magnitude of the spill may quickly overwhelm the deployed equipment necessitating the consideration of other techniques in the overall response strategy (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994; Proceedings of the In Situ Burning of Oil Spills Workshop. NIST. SP934. MMS. 1998, p. 31; Basics of Oil Spill Cleanup, Lewis Publishers, Washington, DC, 2001, p. 233). This paper brings together the current knowledge on in situ burning and is an effort to gain regulatory acceptance for this promising oil spill response tool.  相似文献   

4.
The news media and environmental groups are frequently blamed for public overreaction to unfortunate events like major oil spills; an example of the social amplification of risk. A disconnect between public views regarding spill consequences and necessary remedies on the one hand, and expert opinion on these same questions on the other, is a frequently identified consequence of this social amplification. A more comprehensive examination of the ways in which scientific messages can fail to inform the public or to rationalize public policy suggests however that a more complex phenomenology is at work. Perceived risks can be attenuated as well as amplified, and many organizations besides the news media contribute to the shaping of public risk attitudes. As a result, social and political questions of blame can prove difficult to disentangle from scientific questions of impact. Both social amplification and social attenuation of messages about the risks of oil production and transport are evident in public responses to the Exxon Valdez spill, and both continue to affect the debate about oil production and its transport by sea today. Oil-spill science has had mixed success in modulating these risk concerns, as the conduct of oil-spill science has itself felt the effects of risk amplification and attenuation. Because these difficulties are bound up in questions of social trust, institution building is seen as the best long-term strategy for redress. The Prince William Sound Regional Citizen’s Advisory Council offers a hopeful example that such institution building can occur, given sufficient motivation, resources and the means and time for diverse interests to develop a shared vision of the risks to be addressed.  相似文献   

5.
The spill response community is engaged in a technological rush towards computer-based, information-synthesis systems. Typically, they are modeled after many successful ‘incident command’ or ‘command and control’ systems that rely on micro- or mini-computer technology that is friendly and graphically oriented. Virtually all of these systems offer spill trajectory modeling components. What is typically lacking in this modeling output is any reliable way to estimate the uncertainty. This means that advice derived from the models is of questionable value, and when integrated into a complex response plan, the propagation of errors could seriously compromise the usefulness of results. It is shown that no single trajectory model run can provide the necessary information to respond in an optimal, ‘minimum regret’ strategy. However, a well-defined series of model runs used as the basis for trajectory analysis can provide the required information. A discussion of options suggests that the adoption of a minimum standard analysis procedure would significantly improve the ability of integrated response systems to use the predictions of oil distributions.  相似文献   

6.
7.
The 1970s oil spill model described the infiltration of oil (light nonaqueous phase liquid or LNAPL) into the subsurface, resulting in an oil pancake depressing the water table within the capillary fringe. An update to the 1970s model is needed because, according to the discussion by Lenhard et al. on the work of Lenhard and Parker and Farr et al., “A key concept of their efforts was that LNAPL-saturated ‘pancakes’ do not exist.” Lenhard and Parker and Farr et al. showed that the distribution of water, LNAPL, and air in the subsurface was a function of the LNAPL, water, and air pressures; fluid properties; and the pore-size distribution of the porous medium, and that the fluid saturations can be calculated from fluid levels in a monitoring well. The 1970s oil spill infiltration model described that spilled LNAPL migrates downward through the vadose zone under the force of gravity with some lateral spreading. The vadose zone, where all of the liquid pressures are less than atmospheric pressure, becomes a three-fluid zone consisting of variable saturations of air, water, and LNAPL, which together fully saturate the pore spaces. One important update to the 1970s model is that instead of the infiltrating LNAPL stopping at and depressing the water table, LNAPL penetrates the water table to a depth consistent with the gravitational and capillary forces experienced during LNAPL infiltration and creates a two-fluid zone below the water table where LNAPL and water pressures are greater than atmospheric pressure. After the LNAPL release stops, LNAPL infiltration and migration will cease after reaching equilibrium. The updated LNAPL infiltration conceptual model, like the 1970s model, describes the situation where the LNAPL release has stopped and LNAPL infiltration and migration have ceased after reaching equilibrium. The volume of LNAPL released is also assumed to be sufficient to pass through the vadose zone and enter the saturated zone.  相似文献   

8.
Estimates of occurrence rates for offshore oil spills are useful for analysis of potential oil spill impacts and for oil spill response contingency planning. As the Oil Pollution Act of 1990 (U.S. Public Law 101–380, 18 August 1990) becomes fully implemented, estimates of oil spill occurrence will become even more important to natural resource trustees and to responsible parties involved in oil and gas activities. Oil spill occurrence rate estimates have been revised based on U.S. Outer Continental Shelf platform and pipeline spill data (1964–1992) and worldwide tanker spill data (1974–1992). These spill rates are expressed and normalized in terms of number of spills per volume of crude oil handled. The revisions indicate that estimates for the platform spill occurrence rates declined, the pipeline spill occurrence rates increased, and the worldwide tanker spill occurrence rates remained unchanged. Calculated for the first time were estimates of tanker and barge spill rates for spills occuring in U.S. waters, and spill occurrence rates for spills of North Slope crude oil transported by tanker from Valdez, Alaska. All estimates of spill occurrence rates were restricted to spills greater than or equal to 159 m3 (1000 barrels).  相似文献   

9.
An ongoing chemical and ecotoxicological study of Water Accommodated Fraction of oils is presented and the preliminary findings are discussed. The study aims at obtaining improved and realistic data on potential environmental effects of various oils released and weathered at sea. Such data will be used for improving algorithms in present fate and effect models for damage assessment studies and “Net Environmental Benefit Analysis” of response alternatives in various spill scenarios. Preliminary results show that models used to assess effects in the water column will need to resolve the water soluble fraction of oils into more than one single bulk parameter to produce realistic estimates of effects.  相似文献   

10.
In view of the quantity of oil spilled, smaller spills generally receive less attention than headline grabbing incidents such as the “Amoco Cadiz”, “Exxon Valdez”, “Braer” and “Sea Empress”. The latter incidents involve the loss of significant quantities of oil, the establishment of relatively complex spill response management structures and the involvement of significant numbers of personnel and equipment. As such, large spills from tankers have the potential to create problem areas, for example in establishing and maintaining effective communications, logistics and resource management systems.In general terms spill response personnel are well aware that large spills come complete with significant operational and administrative problems, however what may not be so well recognised is that smaller spills also have the potential to present response personnel with their own unique problems.One of the major problems to be overcome when responding to spills in Australia is the “tyranny of distance”. In quite a few responses, Australian oil spill response managers have had to move personnel and equipment thousands of kilometres to provide an effective outcome. This paper outlines a range of problems that have been encountered by Australian personnel over the years. These include health and safety, communications, logistics and equipment issues.For the purpose of this paper a “smaller” spill has been defined as one involving a discharge of less than 1000 tonnes of oil.  相似文献   

11.
Pilot-scale composting was carried out with cow manure to evaluate the performances of two passive aeration systems: a conventional passive aeration system equipped with horizontal pipes and an unusual passive aeration method based on air delivery by means of vertical pipes. The effects of both types of passive aeration apparatus were investigated in order to determine the degree of composting rate by continuously monitoring temperature, moisture content, organic matter, electrical conductivity, pH and C/N ratio in the piles. Temperatures in the range of thermophily (55-65 degrees C) were reached in all runs within 1-2 days then lasting for about 1 week, a span long enough for pathogen abatement. Results suggest that passive aeration carried out by vertical pipes is more effective for air delivery into compost piles than conventional passive aeration of air adduction with horizontal pipes. The variation in the number of vertical pipes was revealed to be an important parameter for the control of composting rate and temperature. Composting rates estimated from the heat balance equation were substantially in agreement with those computed through the conversion ratio of total organic matter decrement. The conversion ratios and composting rates obtained in this study using passive aeration with vertical pipes were well aligned with those found using forced air delivery systems.  相似文献   

12.
A numerical model for the simulation of the physicochemical weathering processes of an oil spill at sea is presented based on state-of-the-art models. The model includes the most significant processes: spreading, evaporation, dispersion into the water column, emulsification and the change in viscosity and density. These processes depend on each other and are allowed to vary simultaneously since processes are described by a set of differential equations, solved by a fourth-order Runge-Kutta method. Numerical examples are given, in order to test the results obtained, and compared with available experimental data in the literature. The model predicts well the variation of water incorporation, density and viscosity but seems to overestimate the fraction evaporated. However more experimental data are needed to calibrate and validate the model since differences in the composition of the simulated oil and the samples from which experimental data are taken may occur in evaporation studies. The model is suitable to join other modules for the prediction of the spill trajectory by advection due to winds and currents and sub-sea transport.  相似文献   

13.
As the fourth phase of the Three Gorges reservoir project commenced in 2008, the rate of water flow in the Yangtze River has obviously decelerated further downstream and water clarity within the storage facility has decreased. Meanwhile, the rate of urbanization in the region is adding to the amount of municipal solid waste (MSW) being generated by every day life. The composition of the waste is becoming more diversified and complicated, thereby presenting an increasing threat to the ecological environment and water resources of the Three Gorges region. This paper is a probe into MSW in terms of its characteristics as well as methods of storage, collection, transportation, recycling, treatment and disposal, the protection of environmental ecosystems. Municipal solid waste management (MSWM) is one of the major environmental problems in the Three Gorges region, and indeed the whole of China. Based on the analysis of the present situation of MSWM and its treatment/disposal, some methods of sorting, recycling, decomposing, incineration and reuse are described, sanitary landfill as the main disposal method in Chongqing city, incineration being the second. Sanitary landfill or dump was also used for MSW treatment in the Three Gorges region, and this paper also provides some suggestions for improving MSWM in the Three Gorges region.  相似文献   

14.
This paper identifies and estimates time periods as ‘windows-of-opportunity’ where specific response methods, technologies, equipment, or products are more effective in clean-up operations for several oils. These windows have been estimated utilizing oil weathering and technology performance data as tools to optimize effectiveness in marine oil spill response decision-making. The windows will also provide data for action or no-action alternatives. Crude oils and oil products differ greatly in physical and chemical properties, and these properties tend to change significantly during and after a spill with oil aging (weathering). Such properties have a direct bearing on oil recovery operations, influencing the selection of response methods and technologies applicable for clean up, including their effectiveness and capacity, which can influence the time and cost of operations and the effects on natural resources.The changes and variations in physical and chemical properties over time can be modeled using data from weathering studies of specific oils. When combined with performance data for various equipment and materials, tested over a range of weathering stages of oils, windows-of-opportunity can be estimated for spill response decision-making. Under experimental conditions discussed in this paper, windows-of-opportunity have been identified and estimated for four oils (for which data are available) under a given set of representative environmental conditions. These ‘generic’ windows have been delineated for the general categories of spill response namely: (1) dispersants, (2) in situ burning, (3) booms, (4) skimmers, (5) sorbents, and (6) oil-water separators. To estimate windows-of-opportunity for the above technologies (except booms), the IKU Oil Weathering Model was utilized to predict relationships—with 5 m s−1 wind speed and seawater temperatures of 15°C.The window-of-opportunity for the dispersant (Corexit 9527®) with Alaska North Slope (ANS) oil was estimated from laboratory data to be the first 26 h. A period of ‘reduced’ dispersibility, was estimated to last from 26–120 h. The oil was considered to be no longer dispersible if treated for the first time after 120 h. The most effective time window for dispersing Bonnic Light was 0–2 h, the time period of reduced dispersibility was 2–4 h, and after 4 h the oil was estimated to be no longer dispersible. These windows-of-opportunity are based on the most effective use of a dispersant estimated from laboratory dispersant effectiveness studies using fresh and weathered oils. Laboratory dispersant effectiveness data cannot be directly utilized to predict dispersant performance during spill response, however, laboratory results are of value for estimating viscosity and pour point limitations and for guiding the selection of an appropriate product during contingency planning and response. In addition, the window of opportunity for a dispersant may be lengthened if the dispersant contains an emulsion breaking agent or multiple applications of dispersant are utilized. Therefore, a long-term emulsion breaking effect may increase the effectiveness of a dispersant and lengthen the window-of-opportunity.The window-of-opportunity of in situ burning (based upon time required for an oil to form an emulsion with 50% water content) was estimated to be approximately 0–36 h for ANS oil and 0–1 h for Bonnie Light oil after being spilled. The estimation of windows-of-opportunity for offshore booms is constrained by the fact that many booms available on the market undergo submergence at speeds of less than 2 knots. The data suggest that booms with buoyancy to weight ratios less than 8:1 may submerge at speeds within the envelope in which they could be expected to operate. This submergence is an indication of poor wave conformance, caused by reduction of freeboard and reserve net buoyancy within the range of operation. The windows-of-opportunity for two selected skimming principles (disk and brush), were estimated using modeled oil viscosity data for BCF 17 and BCF 24 in combination with experimental performance data developed as a function of viscosity. These windows were estimated to be within 3–10 h (disk skimmer) and after 10 h (brush skimmer) for BCF 17. Whereas for BCF 24, it is within 2–3 d (disk skimmer) and after 3 d (brush skimmer).For sorbents, an upper viscosity limit for an effective and practical use has in studies been found to be approximately 15,000 cP, which is the viscosity range of some Bunker C oils. Using viscosity data for the relative heavy oils, BCF 17 and BCF 24 (API gravity 17 and 24), the time windows for a sorbent (polyamine flakes) was estimated to be 0–4 and 0–10 d, respectively. With BCF 24, the effectiveness of polyamine flakes, was reduced to 50% after 36 h, although it continued to adsorb for up to 10 d. For BCF 17, the effectiveness of polyamine flakes was reduced to 50% after 12 h, although it continued to adsorb for up to 4 d. The windows-of-opportunity for several centrifuged separators based upon the time period to close the density gap between weathered oils and seawater to less than 0.025 g ml−1 (which is expected to be an end-point for effective use of centrifugal separation technology), were estimated to be 0–18 (ANS) and 0–24 h (Bonnie Light) after the spill. Utilizing the windows-of-opportunity concept, the combined information from a dynamic oil weathering model and a performance technology data base can become a decision-making tool; identifying and defining the windows of effectiveness of different response methods and equipment under given environmental conditions. Specific research and development needs are identified as related to further delineation of windows-of-opportunity.  相似文献   

15.
Lessons learned procuring U.S.$30 500 000 of oil pollution recovery equipment for the United States Coast Guard (USCG) in response to requirements of the Oil Pollution Act of 1990 (OPA-90) are presented. A generic requirements analysis and a selection process useful for making equipment acquisitions and staging site selections are described. Response mission, oil spill threat, response area peculiarities, available resources, equipment capabilities, training requirements and life cycle costs are all factors which must be carefully considered in outfitting a response organization. A method to ensure you obtain quality equipment which meets your functional requirements is outlined. Long range concerns about logistics support, training and maintenance are also important considerations.Leveraging existing resources such as existing USCG vessels, commercial vessels available on short notice for lease and the original oil response equipment inventory of the two USCG Strike Teams proved to be extremely cost effective. Selection of a vessel of opportunity skimming system (VOSS) and outfitting replacement offshore buoy tenders with an on-board spilled oil recovery system (SORS) eliminated the costly option of procuring dedicated pollution response vessels which are generally underutilized as a single mission platform. A first article field and factory acceptance testing program ensured all equipment functioned as specified, eliminating costly errors. This process also provided valuable customer input and significant equipment improvements before production started. Quality assurance testing and Government oversight ensured production units were fabricated properly with specified materials identical to the approved first articles adding reliability to the entire delivered system. Staging equipment at three Strike Teams and 19 sites near existing Coast Guard buoy tenders best used the available personnel and vessel resources adjacent to primary oil spill threat areas.  相似文献   

16.
This work proposes an innovative methodology for the reduction of the operation costs and pollutant emissions involved in the waste collection and transportation. Its innovative feature lies in combining vehicle route optimization with that of waste collection scheduling. The latter uses historical data of the filling rate of each container individually to establish the daily circuits of collection points to be visited, which is more realistic than the usual assumption of a single average fill-up rate common to all the system containers. Moreover, this allows for the ahead planning of the collection scheduling, which permits a better system management. The optimization process of the routes to be travelled makes recourse to Geographical Information Systems (GISs) and uses interchangeably two optimization criteria: total spent time and travelled distance. Furthermore, rather than using average values, the relevant parameters influencing fuel consumption and pollutant emissions, such as vehicle speed in different roads and loading weight, are taken into consideration. The established methodology is applied to the glass-waste collection and transportation system of Amarsul S.A., in Barreiro. Moreover, to isolate the influence of the dynamic load on fuel consumption and pollutant emissions a sensitivity analysis of the vehicle loading process is performed. For that, two hypothetical scenarios are tested: one with the collected volume increasing exponentially along the collection path; the other assuming that the collected volume decreases exponentially along the same path. The results evidence unquestionable beneficial impacts of the optimization on both the operation costs (labor and vehicles maintenance and fuel consumption) and pollutant emissions, regardless the optimization criterion used. Nonetheless, such impact is particularly relevant when optimizing for time yielding substantial improvements to the existing system: potential reductions of 62% for the total spent time, 43% for the fuel consumption and 40% for the emitted pollutants. This results in total cost savings of 57%, labor being the greatest contributor, representing over €11,000 per year for the two vehicles collecting glass-waste. Moreover, it is shown herein that the dynamic loading process of the collection vehicle impacts on both the fuel consumption and on pollutant emissions.  相似文献   

17.
Long records of geophysical forcing have been used in numerous studies to estimate a statistical distribution of oil spill scenarios. The resulting set of spill scenarios is then used as a basis for planning a robust response capability that should be able to handle all likely real spills. For model developers to be able to support these expectations there are a number of criteria that must be satisfied: (1) Models must develop and retain the data necessary to answer key response questions; (2) developers must understand the limitations in resolution imposed by the specific algorithms they use; and (3) the cardinality of the long geophysical records (with respect to modeled spill behavior) should be determined and the final collection of spill scenarios must span this set. This paper considers these specific constraints and discusses methods that can be used to quantify some aspects of the uncertainty in the output.  相似文献   

18.
During recent oil spill clean-up operations, residual oils stranded in the intertidal environment were successfully dispersed into the sea by physically accelerating the natural interaction between oil and mineral fines. Oil-mineral fine interaction reduces the adhesion of oil to solid surfaces and promotes the formation of stable micron-sized oil droplets in the water column. By increasing the oil-in-water interface, i.e. the oil becomes more accessible to nutrients, oxygen and bacteria, this interaction becomes a key factor in enhancing oil biodegradation. There is, however, concern that this technique merely transports the oil from one compartment of the environment to another. In our study, controlled laboratory shaker-flask experiments showed that oil-mineral fine interactions stimulates microbial activity by enhancing both the rate and extent of oil degradation by stimulating microbial activity. These results support the application of shoreline oil spill clean-up techniques based on the acceleration of oil-mineral fine interactions.  相似文献   

19.
In this paper we argue that the Exxon Valdez oil spill gained so much attention because of its setting in Alaska. Alaska symbolizes for many Americans the wilderness or frontier that has long been part of American thought. At the same time, American national development has largely depended on the discovery and use of the nation’s abundant natural resources. The setting of the Valdez spill in the seemingly pristine waters of Prince William Sound brought the tension between our national identification with wilderness and our national need for further natural resource exploitation into sharp focus. In the aftermath of the spill, a legislative deadlock was passed and the Oil Pollution Act of 1990 was passed. The Valdez accident had longer-term consequences as well, most prominent of which is related to the ongoing debate over whether to open up the coastal plain in the Arctic National Wildlife Refuge to further development.  相似文献   

20.
One of the most difficult tasks in oil spill response modeling is to provide accurate estimates of the currents and winds during the spill event. This is typically done in an ad-hoc, subjective manner combining very limited field observations with simplified hydrodynamic and meteorological models. As an alternative an integrated environmental monitoring and modeling system, called COASTMAP, is presented. COASTMAP allows the user to collect, manipulate, display, and archive real-time environmental data through an embedded geographic information system and environmental data management tools; to perform simulations with a suite of environmental models (e.g. hydrodynamics, meteorological) in order to predict dynamics in the operational area and to assimilate real-time data into the models to allow hindcasting, nowcasting and forecasting. COASTMAP, operational on a personal computer, is controlled by mouse/keyboard through a series of menus and uses color graphics to present model predictions (plots, graphs, animations) and the results of data analyses. The software is designed using a shell based architecture making application to any geographic location simple and straightforward.In the present paper, COASTMAP is linked with OILMAP to provide a fully operational, real-time system that allows prediction of circulation, winds and oil spill trajectory and fate for estuarine and coastal sea areas. System performance is illustrated by the simulation of the trajectory of oil tracking buoys during two experiments performed in the lower west passage of Narragansett Bay. Simulation results using several forecast procedures, with/without real-time data, are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号