首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
空气动力学直径小于10μm的可吸入颗粒物(PM10),尤其是粒径小于2.5μm的细颗粒(PM2.5),是大气光化学烟雾、酸沉降、极端气候事件发生的重要贡献者.广州是可吸入颗粒物污染较为严重的城市,目前,已有许多关于广州市可吸入颗粒物的浓度水平及其化学组成的研究.本文在广州市东山区一过街天桥采集样品,研究交通高峰期PM2.5/PM10质量浓度的水平.  相似文献   

2.
基于2015—2020年海南省18个市县环境监测数据和气象观测数据,结合Cressman客观差值、相关分析和气候倾向率等统计方法对PM2.5和PM10质量浓度时空分布特征进行深入分析.结果表明,PM2.5和PM10质量浓度空间分布上均呈北半部高于南半部的特征,同时2015—2020年均表现为快速下降的变化趋势,趋势系数分别为-0.982(PM2.5)和-0.935(PM10),通过了99.9%的信度检验.PM2.5和PM10质量浓度有明显的季节变化特征,冬季质量浓度最高,秋季和春季次之,夏季最低.PM2.5和PM10质量浓度呈现U形的逐月变化,最低值出现在7月,最高值出现在12月. PM2.5和PM10质量浓度呈“双峰双谷”型的日变化,受人为活动影响较为显著. PM2.5和PM10与...  相似文献   

3.
为研究天津市夏季PM2.5中碳组分的时空变化特征及来源,于2019年7—8月设立2个点位分昼夜采集天津市PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量。结果表明,城区PM2.5、OC和EC浓度日均值分别为(53.4±20.8)μg·m-3、(8.72±2.56)μg·m-3和(1.67±0.90)μg·m-3,郊区PM2.5、OC和EC浓度日均值分别为(54.2±24.5)μg·m-3、(7.54±2.50)μg·m-3和(1.82±1.06)μg·m-3;白天PM2.5、OC、EC的平均浓度分别为(47.3±16.1)μg·m-3、(8.7±2.1)μg·m-3和(1.5±0.6)μg·m-3,夜间PM2.5、OC、EC的平均浓度分别为(60.2±26.2)μg·m-3、(7.5±2.9)μg·m-3和(2.0±1.2)μg·m-3。OC浓度表现为城区高于郊区,白天高于夜间;EC及PM2.5浓度表现为郊区高于城区,夜间高于白天。OC/EC比值分析得,城区(6.04)高于郊区(5.08);白天(6.58)高于夜间(4.54)。城区OC与EC相关性弱于郊区,白天OC与EC相关性弱于夜间。采用EC示踪法与MRS模型对SOC含量进行估算,得到白天与夜间SOC浓度分别为(5.71±1.35)μg·m-3和(3.81±1.20)μg·m-3,白天SOC污染比夜间严重。丰度分析与主成分分析的结果表明,天津市夏季城郊区PM2.5中碳组分均主要来源于燃煤和机动车尾气排放。  相似文献   

4.
江苏沿江城市PM10和PM2.5中水溶性离子特征及来源分析   总被引:1,自引:0,他引:1  
陈诚  陈辰  汤莉莉  张甦 《环境化学》2014,(12):2123-2135
2012年3月和6月在江苏沿江七市(镇江、常州、无锡、苏州、扬州、泰州和南通)采集空气中PM10和PM2.5样品,运用离子色谱法,分析无机水溶性离子成分,并对其组成、相关性、结合形式和来源解析等方面进行研究.结果表明,春季苏南四市PM10和PM2.5质量浓度低于苏中三市,夏季反之;水溶性离子在PM2.5中所占的比例一般高于PM10,SO2-4、NO-3、NH+4是颗粒物中水溶性离子的主要成分,占总量的80%左右.PM10和PM2.5中的SO2-4和NO-3、NH+4和SO2-4、NO-3之间均具有较好的相关性;PM10中Ca2+和Mg2+显著相关,细粒子中相关性较小.NH+4和SO2-4、NO-3主要以(NH4)2SO4和NH4NO3存在于可吸入颗粒物中.春夏两季,江苏沿江城市PM10和PM2.5中的SOR均大于NOR,SO2在大气中的转化率比NOx的转化率要高;苏南地区PM10和PM2.5中的SOR和NOR高于苏中地区.运用[NO-3]/[SO2-4]的比值法研究颗粒物污染来源,表明春季的污染源主要为流动源,夏季为固定源.运用因子分析法分析颗粒物来源,燃煤、交通运输、生物质燃烧、土壤和建筑地表扬尘是春夏两季江苏沿江城市可吸入颗粒物的主要污染源.  相似文献   

5.
于2017年冬季12月13—21日在青藏高原东缘理塘地区分昼夜采集PM2.5样品,并用DRI2001A热光碳分析仪测定了有机碳(OC)和元素碳(EC)的质量浓度,研究青藏高原PM2.5中碳组分的化学特征及主要来源,以期为理塘地区制定污染排放政策提供参考。结果表明,2017年冬季青藏高原东缘理塘地区PM2.5平均质量浓度为44.34μg·m?3,OC和EC的质量浓度为12.72μg·m?3和3.85μg·m?3,分别占PM2.5质量浓度的29.61%和8.96%。通过经验公式,计算得到总碳气溶胶(TCA)质量浓度为24.20μg·m?3,占PM2.5的54.84%,说明碳质气溶胶对青藏高原东缘理塘地区PM2.5有着十分重要的贡献。OC和EC在白天和夜间都有较高的相关性(相关系数分别为0.74和0.91),表明OC和EC的来源基本一致,受燃烧源影响较大。其中白天的相关系数低于夜间,说明青藏高原东缘理塘地区白天碳组分来源相对复杂。昼夜浓度对比显示,青藏高原东缘理塘地区PM2.5白天和夜间的质量浓度分别为53.88μg·m?3和33.44μg·m?3,OC和EC浓度白天高于夜间,表明白天人为排放相对较高。冬季观测期间,PM2.5中二次有机碳(SOC)昼夜浓度分别为1.11μg·m?3和3.03μg·m?3,分别占OC质量浓度的7.09%、26.59%,表明青藏高原东缘理塘城区白天碳组分主要为一次源。利用PMF 5.0软件对理塘城区碳组分进行进一步的解析,结果显示燃煤和生物质燃烧的混合源对总碳(TC)的贡献高达47.84%,占比最高;其次是汽车尾气和柴油车尾气源,贡献率分别为28.62%和23.54%。  相似文献   

6.
为研究中国典型沿海城市冬季PM2.5中碳组分的污染特征及来源,于2018年12月5日—2019年1月30日分别在天津(TJ)、上海(SH)和青岛(QD)同步采集PM2.5样品。结果表明,天津、上海和青岛PM2.5的平均浓度分别为(116.96±66.93)、(31.21±25.62)、(74.93±54.60)μg·m-3,OC和EC的空间分布均为天津(18.69±7.95)μg·m-3和(4.98±2.08)μg·m-3>青岛(16.45±8.94)μg·m-3和(2.01±1.04)μg·m-3>上海(7.28±3.11)μg·m-3和(1.05±1.25)μg·m-3。3个站点的OC和EC均呈现较好的相关性,表明OC和EC具有相似的来源;OC/EC比值范围在2.37—7.53、5.47—46.41和4.77—13.36之间,证明各采样点均存在二次有机碳(SOC)的生成;采用最小R2法(MRS)估算SOC浓度,得到3个采样点SOC的平均质量浓度为(5.09±4.68)、(3.90±1.65)、(4.21±4.31)μg·m-3,分别占OC总量的27.2%、55.8%和19.5%,其中上海的SOC在OC中的占比最大,说明上海二次有机碳污染较为严重,这主要归因于冬季严重污染源排放和有利的二次转化气象条件,而天津和青岛的碳组分主要来自污染源的直接排放。主成分分析(PCA)结果发现,天津PM2.5中碳组分主要来源于道路尘、生物质燃烧和机动车尾气,上海PM2.5中碳组分主要来源于生物质燃烧、道路扬尘和机动车尾气。青岛PM2.5中碳组分主要来源于道路扬尘、机动车尾气。后向轨迹聚类分析表明,来自西北方向的气团对天津的影响较大,PM2.5和碳组分的浓度值最大;而对上海而言,主要受北方气溶胶经过海面又传输回上海的气团的影响;青岛站点主要受华北地区污染物和本地排放源的影响。  相似文献   

7.
厦门市空气PM10中有机碳和元素碳的污染特征   总被引:7,自引:0,他引:7  
碳气溶胶是厦门市空气中可吸入颗粒物的主要来源之一.本文对厦门市空气中PM10进行研究,探讨有机碳和元素碳的分布特征,为有效控制城市空气中可吸入颗粒物污染提供科学依据.  相似文献   

8.
杭州市空气中PM10的化学组成特征   总被引:2,自引:0,他引:2  
于2001年2月至2002年4月在杭州5个空气质量自动监测子站采集了176组PM10样品,分析了22种化学元素、5种离子以及有机碳(OC)和元素碳(EC)的含量,并讨论了PM10的化学组成特征.杭州市空气中铅污染仍然存在,硫的存在形式主要为水溶性硫酸盐.5种水溶性离子的浓度由大到小排列的顺序是SO2-4> NO-3> NH+4>Cl->F-,大气中NH+4主要是以(NH4)2SO4,NH4HSO4和NH4NO3的形式存在.OC和EC浓度分别为20.4 μg·m-3和4.0 μg·m-3,其相关性不好表明碳的来源复杂.PM10的物质平衡计算表明,局地地质尘是最高的化学组分,达27.7%,其次为有机物23.9%,第三为硫酸盐16.2%,这3个组分占PM10的67.8%,其它为硝酸盐6.3%,铵盐6.1%,微量元素5.5%,元素碳3.4%以及未测组分11.0%.  相似文献   

9.
王巍 《环境生态学》2022,4(4):28-32
为了解兰州市不同地区、不同季节居民室内外空气可吸入颗粒物(PM10)中重金属的污染水平及其对人体的健康风险,本研究分别于采暖季和非采暖季在兰州市城关区和榆中县设置多个采样点,采集室内外大气PM10样品,利用ICP/MS分析其中Cd、As、Ni、Pb、Zn、Cu和V的含量,采用健康风险评价模型计算了居民对几种重金属经呼吸...  相似文献   

10.
目前国内对可吸入颗粒物中多环芳烃(PAHs)的研究很多,不少城市(如上海、北京、广州等)对PAHs的时空分布特征及其来源进行分析.虽然,乌鲁木齐市可吸入颗粒物中重金属的浓度及粒径分布已作研究[1],但有关PAHs的分布特征及可吸入颗粒物中PAHs与重金属的相关性报道则鲜见.  相似文献   

11.
12.
选取成都市新气象宾馆(市区采样点)和下风向的成都信息工程学院航空港校区(郊区采样点)为采样点,同时采集2009年秋、冬季大气PM10样品,分析其特征有机污染物(多环芳烃、正构烷烃和二元羧酸)的浓度水平及污染特征,探讨其污染来源,为城市大气污染控制提供支持.1实验部分1.1样品采集及预处理在成都市新气象宾馆(市中心采样点)和下风向的成都信息工程学院航空港校区(郊区采样点)用空气总悬浮微粒采样器带PM10切割器(武汉天虹仪表有限公司)采集大气PM10.采样点均在建筑物楼顶,高度约15 m.分别同时采集日  相似文献   

13.
西安冬、夏季PM2.5中水溶性无机离子的变化特征   总被引:3,自引:0,他引:3  
为探讨西安市冬、夏季水溶性无机离子的季节和空间变化特征,2010年1月和7月分别在西安城区4个站点及上风区高陵(GL)和下风区黑河(HH)连续采集2周的PM2.5样品,使用离子色谱仪分析样品中水溶性无机离子成分.结果表明,PM2.5质量浓度冬季明显高于夏季,空间变化表现为:城区站点浓度均值(172.6μg.m-3)>上风区点GL(98.9μg.m-3)>下风区点HH(81.0μg.m-3).水溶性无机离子浓度总和占PM2.5质量浓度的41.8%,其中SO24-、NO3-和NH4+是水溶性离子的主要成分,分别占总离子质量浓度的35.1%、22.6%和12.2%.Na+、Ca2+和Mg2+在冬、夏季浓度相差不大,而SO24-、NO3-、NH4+以及K+、Cl-等均明显表现为冬季浓度高于夏季.SO24-、NO3-和NH4+在冬、夏季空间变化均表现为城区站点>GL>HH,这3种离子夏季在大气中的主要存在方式为NH4HSO4和NH4NO3,而冬季主要以(NH4)2SO4、NH4NO3和NH4Cl形式存在.NO3-/SO24-的比值为0.64,表明西安市固定源仍是主要污染贡献源,但是移动源所占比例较之前研究有所上升,应采取一定措施控制机动车数量并加强排放监控.  相似文献   

14.
2007年6月至2008年3月分4个季度采集图们市4个监测点的大气可吸入颗粒物样品,采用超声波萃取法提取样品中多环芳烃,通过旋转蒸发对提取液进行浓缩,再用氮气吹至0.5 mL,用高效液相色谱法进行定量测定.结果表明,在图们市区大气可吸入颗粒物中共检出13种美国EPA优先控制的多环芳烃,含量范围为0.001—21.55μg.m-3.含量的时空变化规律明显,冬季各监测点多环芳烃的含量明显高于其它季节,夏季含量最低.一天之内早上或晚上多环芳烃的含量普遍高于中午.卫检处和气象局监测到的PAHs含量明显高于环保局和安山监测点.PAHs主要来源于燃煤和机动车尾气排放.  相似文献   

15.
PM2.5中水溶性无机组分的浓度及时空分布等已开展了大量的研究.这些研究主要集中在污染较重的地区或者敏感区,比如居民区或者道路边等.而关于我国城市森林生态系统对大气PM2.5及其组分的影响还未开展系统的研究.研究PM2.5中的水溶性离子组分在城市森林系统中的时空分布特征将有助于了解生态系统与大气颗粒物之间的相互影响,对大气污染治理及城市绿化都具有参考意义.因此,本研究对北京市的4个采样点PM2.5中水溶性无机离子组分进行了观测.  相似文献   

16.
本文旨在分析哈尔滨市两城区(道里区和香坊区)2014年—2019年PM2.5中16种芳香烃质量浓度变化规律,明确芳香烃中主要的污染及来源.将颗粒物中的多环芳香烃收集于滤膜,滤膜用乙醚/正己烷的混合溶剂提取,提取液经过浓缩、净化后,用具有荧光及紫外检测器的高效液相色谱仪分离检测.通过空气污染人群健康检测系统选取与PM2.5监测期相同时期的平均气压、平均温度、平均相对湿度、降水量、日照小时数、平均风速等6种气象因素数据,采用Spearman法分析6种气象因素与16种多环芳香烃的相关性.结果表明,道里区PM2.5平均质量浓度为84.9μg·m-3,香坊区为86.5μg·m-3.两城区的PM2.5与平均气压呈显著正相关,与平均温度、平均相对湿度、降水量、日照小时数呈显著负相关.道里区和香坊区在2014—2019年多环芳香烃平均质量浓度分别为50.7 ng·m-3、59.5 ng·m-3.其贡献值由高到低为芘>荧蒽&...  相似文献   

17.
森林被誉为"地球之肺",在防霾治污方面有其独特不可替代的作用,不同树种沉降PM2.5的功能有很大差别.本文选取代表性城市森林——奥林匹克森林公园为研究对象,设置垂直监测塔观测大气PM2.5的浓度垂直分布,以考察不同季节城市森林对PM2.5中各组分的影响.在冬季、春季和夏季各采集PM2.5样品,分析并计算PM2.5中Na+、NH4+、K+、Mg2+、Ca2+、Cl-、NO3-和SO42-等典型水溶性无机离子的浓度.结果表明,PM2.5中水溶性无机离子总浓度呈规律性变化特征:冬季((56.90±27.38)μg·m-3)>春季((46.69±12.24)μg·m-3)>夏季((23.16±8.75)μg·m-3).其中SO42-和NO3-浓度和占PM2.5主要水溶性无机离子总浓度的50%以上.3个季节中,除冬季外,在春季和夏季,8种离子有明显的垂直方向上的沉降,夏季的沉降速率高于春季,但是春季由于大气颗粒物浓度高,沉降通量高于夏季.NO3-和SO42-垂直方向的沉降量在所有可溶性无机离子中最高.植被密度、叶面积指数、气象条件等因素对于PM2.5的沉降特征有明显影响.  相似文献   

18.
2011年冬季天津PM2.5及其二次组分的污染特征分析   总被引:5,自引:0,他引:5  
姚青  韩素芹  蔡子颖 《环境化学》2013,32(2):313-318
2011年11月—12月于天津城区和武清采集PM2.5样品,分析其中的二次水溶性无机离子(NH4+、NO3-和SO24-)、有机碳(OC)和元素碳(EC),估算二次成分浓度,并分析采样期间气象因素对一次持续重污染过程的影响.结果表明,天津地区冬季PM2.5污染严重、城区和武清PM2.5质量浓度平均值分别为166.9μg.m-3和180.0μg.m-3;城区样品中SO24-、NO3-和OC在PM2.5的比例依次为19.4%、16.7%和15.4%,武清样品中则为19.2%、15.5%和20.4%;二次组分占PM2.5质量浓度的47%(城区)和46%(武清),雾霾日二次组分含量明显高于非雾霾日;高湿和静小风等不利气象条件是造成PM2.5质量浓度持续增加以及二次组分浓度迅速升高的重要原因.  相似文献   

19.
采集了2018年保定市污染天气的PM2.5样品,采用离子色谱法测定了PM2.5样品中的水溶性离子(WSIs),分析了不同季节PM2.5及其水溶性离子的分布特征,并采用PMF模型对PM2.5进行了源解析.结果表明,采样期间保定市的PM2.5浓度为18.4—258.0μg·m-3,年均值为(91.5±62.5)μg·m-3;季节规律是冬季(160.6μg·m-3)>秋季(105.3μg·m-3)>春季(57.6μg·m-3)>夏季(53.2μg·m-3).WSIs年均值为49.20μg·m-3,占PM2.5.的63.95%,WSIs的季节规律和PM2.5的一致.二次离子占水溶性离子的77.12%.湿度和温度与SOR和NOR成正相关.春夏两季水溶性离子主要以Na...  相似文献   

20.
为分析济南市PM2.5中二次组分的时空变化和影响因素,对济南市春季(2019年5月16—25日)、秋季(2019年10月15—24日)和冬季(2019年12月17—2020年1月16日)4个典型点位的PM2.5样品进行连续采样,并测定了PM2.5中水溶性离子、有机碳(OC)和元素碳(EC)的含量。结果表明:物流交通区的二次组分质量浓度最高(56.13μg·m?3),钢铁工业区的二次组分浓度比城市市区高,但是二次组分占比较城市市区低,清洁对照点的浓度和占比最低;济南市4个功能区SO42?和NO3?转化率均高于0.1,除清洁对照点外,城市市区、钢铁工业区和物流交通区的SO42?转化率明显高于NO3?转化率;济南市春季、秋季和冬季的ρ(NO3?)/ρ(SO42?)分别为0.67、2.57和1.98,春季PM2.5浓度以固定源贡献为主,秋季和冬季以移动源贡献为主;运用ISORROPIA热力学模型分析了含水量和pH对二次组分生成的影响,含水量会随着污染增大而增大,酸度和含水量对二次无机组分的转化机理产生影响,酸度会抑制二次无机组分的生成,而含水量会促进二次组分的生成;后向轨迹聚类分析结果表明,占比最高的轨迹(29.2%)来自东北方向的滨州和东营,基于潜在源贡献因子(WPSCF)和浓度权重轨迹(WCWT)分析PM2.5中二次组分质量浓度的潜在污染源区域,SO42?的主要贡献源区在济南市区北部的济阳区和东北方向的滨州、东营等,NO3?和NH4+的主要贡献源区在济南市区北方向的济阳区、东北方向的章丘区和南方向的莱芜区等。该研究结果可为中国北方城市细颗粒物进一步的治理和防控提供数据支撑和理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号