首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
无机复合调理剂对污泥脱水性能的影响   总被引:6,自引:0,他引:6  
刘欢  李亚林  时亚飞  李野  何姝  杨家宽 《环境化学》2011,30(11):1877-1882
针对污泥的固化填埋或建材化利用等后续处置方式,采用FeCl3与生石灰、粉煤灰两种骨架构建体为主要成分的无机复合调理剂对市政污泥进行调理.通过污泥真空抽滤、离心脱水及比阻测定实验,分别确定FeCl3、生石灰、粉煤灰的优化投加量为2.0 g.L-1、20.0 g.L-1、30.0 g.L-1.在优化投加量下,污泥比阻可降到...  相似文献   

2.
利用气相色谱和红外分光测油仪测定原油污染土壤中油成分的含量,对萃取剂种类和用量、萃取时间、萃取次数、温度和pH值进行优化.结果表明,正己烷萃取效果较好,气相色谱杂峰相对少.萃取剂用量为每克干土样加6-7ml正己烷时,萃取油量最大.萃取时间超过24h,萃取效率不再明显升高.萃取效率随萃取次数的增加而增加,可达到100%.pH值小于3时,萃取效果好;pH值大于7时,萃取能力受到极大抑制.温度则选择50-60℃较为适中.  相似文献   

3.
土壤球囊霉素相关蛋白(glomalin-related soil protein,GRSP)是评价土壤健康的重要指标。研究了土样粒径、贮存条件和高温提取后离心延误时间3个影响因子对采用Bradford法测定GRSP含量的作用效果。结果表明,土样粒径对易提取GRSP(EEG)的提取测定影响显著,过0.074 mm孔径筛土样中提取出的EEG含量高于过0.149、0.25、1 mm孔径筛的土样;总GRSP(TG)含量的测定结果对土样粒径的变化没有明显响应,测定TG含量可采用过1 mm孔径筛的土样。贮存条件影响EEG和TG含量的测定,有机质含量低的土样室温保存18个月条件下测得的EEG含量低于-20℃保存条件下;有机质含量高的土样室温保存条件下测得的EEG含量高于-20℃保存条件下;室温保存条件下3个有机质含量水平的土样TG含量均高于-20℃保存条件下。不同样品保存方式间3个有机质含量水平的土样EEG或TG含量差异均显著。为减小有机质降解等的影响,宜低温保存土样。提取后延误离心将导致EEG含量测定值降低,因此延误时间以控制在1 h之内为宜;离心延误2 h内不同延误时间之间测得的TG含量无显著差异。  相似文献   

4.
微生物絮凝剂具有无毒性,绿色生产等优点,能够安全地用于给水处理及污废水处理.本文通过阳离子改性和与非生物絮凝剂复配的方法,提高MBF-NIII2的絮凝能力.以MBF-NIII2为原料,利用3-氯-2-羟丙基三甲基氯化铵(CHTAC)对其修饰,合成新型阳离子化的微生物絮凝剂(CMBF-NIII2)以CMBF-NIII2为研究主要对象,对校园生活污水进行处理.通过改变投加量、pH值、沉淀时间与温度,探究CMBF-NIII2絮凝能力的变化规律.将改性前的MBF-NIII2与改性后的CMBF-NIII2分别用于校园生活废水的处理,对比发现当CMBF-NIII2投加量为1.3 mL,pH 4.6,温度为60℃,沉降时间为40 min时,絮凝率达到91.5%,且COD去除率为87.8%,絮凝能力明显优于MBF-NIII2(絮凝率为47.61%),能更高效地絮凝生活污水.以MBF-NIII2与三氯化铁复配处理生活污水,结果表明MBF-NIII2和FeCl_3的投加量分别为10 mg·L~(-1)和15 mg·L~(-1)时,絮凝率可达88.06%,不仅比单独使用MBF-NIII2的处理效果好,还相对减少了絮凝剂的投加量.  相似文献   

5.
建立了气相色谱串联质谱法(GC-MS/MS)测定食品接触材料中碳酸二苯酯迁移量的方法.用水作为食品模拟物,按一定条件浸泡样品后,对浸泡液中碳酸二苯酯用二氯甲烷进行液液萃取后进样分析.结果表明,碳酸二苯酯标准溶液在0.0010—1.0 mg.L-1范围内线性良好;对水进行加标回收试验,平均回收率为83.1%—95.9%,相对标准偏差(n=6)为3.6%—4.6%.该方法灵敏度高、定量准确、抗干扰能力强、重现性好,可用于聚碳酸酯食品接触材料中碳酸二苯酯迁移量测定.  相似文献   

6.
常安刚  周凯  江静  吴向阳  张祯 《环境化学》2013,32(2):295-301
以l-辛基-3-甲基咪唑六氟磷酸离子液体([C8MIM][PF6])为萃取剂,利用温度驱动离子液体分散液-液微萃取技术,结合高效液相色谱(HPLC)同时测定环境水体中2种磺胺类化合物:磺胺间二甲氧嘧啶(sulfadimethoxine,SDM)和磺胺甲噁唑(sulfamethoxazole,SMZ).对影响萃取效果的一系列因素(萃取剂、分散剂、萃取剂和分散剂的体积、pH、温度、萃取时间、盐度和离心时间等)进行了优化,在最优条件下,该方法具有较宽的线性范围(2—200μg.L-1)、较低的检出限(SDM,1.22μg.L-1;SMZ,0.50μg.L-1)、良好的重现性(RSD:SDM,1.94%;SMZ,1.9%;n=7)和较高的准确性(回收率,SDM,88.7%;SMZ,101.3%;n=7).以该方法对几处环境水样进行测定,获得了良好的回收率(63.0%—124.0%;RSD:2.1%—4.9%;n=6).  相似文献   

7.
马明  清江  周韵  周宇艳  刘曙 《环境化学》2013,32(4):708-710
建立了气相色谱串联质谱法(GC-MS/MS)测定食品接触材料中邻苯二甲酸二丁酯(DBP)及邻苯二甲酸二(2-乙基己基)酯(DEHP)向食品模拟物中迁移量的方法.按一定条件浸泡后,脂性模拟物异辛烷直接进样分析,而水性模拟物(水、3%乙酸溶液及10%乙醇溶液)用正己烷进行液液萃取后进样分析.结果表明,DBP标准溶液在0.02—1.00 mg.L-1范围内线性良好,而DEHP标准溶液在0.04—1.00 mg.L-1范围内线性良好;本方法在4种模拟物浸泡液中,回收率为80.3%—103.4%,相对标准偏差(n=6)为1.37%—5.71%.该方法灵敏度高、定量准确、抗干扰能力强、重现性好,可用于食品接触材料中DBP及DEHP向食品模拟物中的迁移量测定.  相似文献   

8.
为进一步提高无机高分子絮凝剂的处理效果并降低处理成本,研究"一步法"絮凝剂制备工艺,同时引入稀土镧对絮凝剂进行改性处理,制备固体稀土镧聚合硫酸铁絮凝剂(La-PFS).实验通过响应面优化絮凝性能,研究结果表明.聚合温度为123℃、镧铁摩尔比为1∶105.56、OH~-/Fe摩尔比为0.19时,制备产品对高浊度废水除浊效率效果达到99.41%.引入稀土镧在一定程度上增长絮凝剂链状结构,增强吸附能力.在对造纸废水处理中,稀土镧聚合硫酸铁对造纸废水处理效果明显优于传统市售絮凝剂,絮凝沉淀速度有较大提升,浊度去除率达到68%,COD_(Cr)去除率达到35%.  相似文献   

9.
建立了同时检测饮用水中6大类共12种典型药品和个人护理品(Pharmaceuticals and personal care products,PPCPs)的自动固相萃取-液相色谱-电喷雾三重四极杆串联质谱(ASPE-HPLC--ESI-MS/MS)方法.样品经ASPE(自动固相萃取)富集提取后,40℃氮吹至近干,用甲醇-水溶液(20∶80,V/V)定容至1 mL后测定.采用正离子和负离子多反应监测离子模式(MRM)定性分析,针对不同扫描模式优化流动相条件,两次进样分析.在低、中、高的3个添加水平下,12种PPCPs的方法回收率为60.8%—110%,相对标准偏差为2.0%—14.0%;检出限(LOD)为0.02—1.5 ng·L-1,定量限(LOQ)为0.06—5 ng·L-1.应用该方法调查了北京市饮用水中PPCPs污染状况,结果表明,9种PPCPs(氧氟沙星、脱水红霉素、磺胺甲恶唑、卡马西平、舒必利、普萘洛尔、萘普生、苯扎贝特和双酚A)在不同饮用水水样中被检出,最高浓度为苯扎贝特34.47 ng·L-1.该方法操作简单、灵敏度高、选择性强,符合饮用水样品中痕量污染物检测要求.  相似文献   

10.
建立基质固相分散(MSPD)辅助加压溶剂萃取(PLE)-高效液相色谱法测定土壤中16种多环芳烃的方法.土壤样品与弗罗里硅土混匀后装入萃取池,在15 MPa、120℃萃取条件下,丙酮∶二氯甲烷(1∶1,V∶V)作为萃取溶剂,静态提取5min,应用高效液相色谱法荧光检测-二极管阵列检测串联,采用外标法对其进行定量分析.结果表明:16种多环芳烃线性关系良好,相关系数均大于0.9994,利用荧光检测器与二极管阵列检测器的方法检出限分别为0.04—0.8μg·L-1、0.6—20μg·L-1,在低、中、高3个水平下的加标回收率在78.4%—105.8%范围内,测定结果的相对标准偏差为1.2%—4.1%(n=5).  相似文献   

11.
初步实验证实螯台球菌(Chelatococcus daeguensis)TAD1在高温下具有异养硝化-反硝化的能力,为验证其可应用性,采用曝气生物滤池工艺,研究了TAD1在温度为50℃的异养硝化-反硝化性能.结果表明,TAD1在曝气生物滤池中可同时进行好氧反硝化和异养硝化.当分别以硝氮、氨氮及硝氮和氨氮为氮源时,12 h的氮去除率均达到100%,氮的去除能力分别为12.67 mg.L-.1h-1、3.62 mg.L-.1h-1及16.53 mg.L-.1h-1.虽然在脱氮过程中,亚硝盐在6 h迅速积累到76 mg.L-1(硝氮为氮源)和52.6 mg.L-1(硝氮和氨氮为氮源),但在随后的几个小时内又快速降低至0(检测限之外).因而,TAD1具有应用于高温生物脱氮工艺的能力和优势.  相似文献   

12.
陈为旭  张济宇 《生态环境》2010,19(8):1930-1935
针对花岗石开采加工区域受污染溪水的特点,研究聚合氯化铝PAC(絮凝剂)与聚丙烯酰胺PAM(助凝剂)在不同加入量、不同搅拌转速、不同絮凝反应时间和不同静置沉降时间条件下的污水处理效果。首先通过设计影响絮凝的单因素试验与正交试验,获得影响絮凝效果的主次因子顺序(PAM加入量〉静置沉降时间〉PAC加入量〉絮凝反应时间〉搅拌转速)与絮凝效果最佳的工艺条件(PAC=20mg.L-1、PAM=2.5mg.L-1、搅拌转速=300r.min-1、絮凝反应时间=8min、静置沉降时间=15min)。然后依此对受污染溪水原样进行絮凝处理,使受污染溪水的浊度与SS分别从原来的17.6NTU与300mg.L-1下降至0.98NTU与17mg.L-1,达到《污水综合排放标准》GB8978-1996中的一级标准(SS≤20mg.L-1),这为受污染溪水的降浊处理提供一条有效途径,对保护环境、节约水资源、降低石材企业生产成本与可持续发展具有重要意义。  相似文献   

13.
低浓度溶解氧下猪粪固体有机物水解产酸研究   总被引:2,自引:0,他引:2  
本文以猪粪为发酵原料,通过批式实验研究不同溶解氧(DO)浓度(0—0.26 mg.L-1)、发酵时间(3—12 d)和挥发性固体(VS)浓度(11.14—111.35 g.L-1)对猪粪固体水解酸化过程的影响,确定了低DO浓度下固体有机物优化水解产酸工艺条件:中温35℃,初始VS浓度37.11 g.L-1,初期的DO浓度0.1—0.26 mg.L-1.在此条件下,发酵时间3 d,DO浓度下降到0.10 mg.L-1以下.猪粪发酵液pH值由7.45±0.10降低到5.86±0.17,VS降解率(25.67±1.20)%,挥发性脂肪酸(VFA)中乙酸(3895±91)mg.L-1、丙酸(2313±82)mg.L-1、正丁酸(1361±17)mg.L-1、正戊酸(540±11)mg.L-1.优化条件下的猪粪水解酸化液进行厌氧产甲烷发酵,发酵10 d内产气停止,低溶解氧水解酸化和厌氧产甲烷发酵累计时间仅为13 d,甲烷体积分数(69.5±0.2)%,VS产气率为(0.282±0.011)L CH.4g-1VS.研究结果表明,适当延长发酵时间能够增加VFA中乙酸的含量,初始VS浓度差异对发酵液VFA浓度和VS降解率的影响较显著,低溶解氧能够促进猪粪固体有机物水解过程.  相似文献   

14.
膨润土负载纳米铁用于降解水体中阿莫西林   总被引:2,自引:0,他引:2  
采用液相还原法合成膨润土负载纳米铁(B-nZVI)和纳米铁(nZVI)并用于降解水中的阿莫西林.实验结果表明,无论是单独nZVI还是B-nZVI都能有效降解阿莫西林.在25 mL浓度为20 mg.L-1的阿莫西林溶液中加入0.1 g的B-nZVI(其中nZVI的含量为0.05 g),溶液的初始pH值为6.65,摇床的振荡速率为250 r.min-1,反应温度为25℃,反应时间为120 min的条件下,B-nZVI对阿莫西林的降解效率高达93.1%,在此实验条件下,单独nZVI(0.05 g)对阿莫西林的降解效率只有82.3%,这是由于膨润土对nZVI起到分散作用,从而使B-nZVI的反应活性得到提高.降解动力学研究表明,B-nZVI对阿莫西林的降解过程符合表观一级反应动力学规律,相关系数R2均大于0.945.B-nZVI可多次重复用于降解阿莫西林.  相似文献   

15.
添加剂对污泥厌氧消化性能的影响   总被引:1,自引:0,他引:1  
在间歇培养条件下,研究了还原型辅酶Ⅱ(NADPH)、乙酰辅酶A(Acetyl Co A)和对氨基苯甲酸(PABA)3种添加剂对污泥厌氧消化性能的影响.结果表明,3种微生物活性促进剂均能促进污泥厌氧消化产气.其中,NADPH的促进效果最为显著,消化第35 d,产甲烷量比对照组高15.90%.在污泥含固率为3%、未调初始pH(pH=6.7)和温度35℃的厌氧消化条件下,NADPH的最佳添加量为50 mg.L-1,消化第36 d,污泥累积产甲烷量127.13 mL.g-1VSS.在含固率3%、初始pH=8.5、温度55℃和NADPH添加量为50 mg.L-1的工艺条件下,污泥厌氧产气效果最佳,消化第30 d时累积产甲烷量达158.02 mL.g-1VSS.  相似文献   

16.
在水资源日益紧张、含盐废水排放量日益增多的大趋势下,寻求经济有效的含盐废水处理技术已成为重要的研究课题。以厦门某食品企业水产品加工腌泡环节含盐废水为研究对象。含盐废水经氨水沉淀、离子交换树脂软化处理,废水中钙镁离子被有效脱除,出水钙镁质量浓度已经降为10.4mg·L-1,达到软水水质标准。软化后的废水经4‰聚丙烯酰胺(PAM)絮凝并通过活性炭吸附,污染密度指数值(SDI)降低至0.41,完全达到膜分离装置进水水质的要求。预处理液再经电渗析膜进一步浓缩分离后,氯化钠质量浓度可由7351mg·L-1提升到78156mg·L-1,对盐分浓缩了10倍以上,达到废水和盐分的处理回收利用。本处理工艺流程简洁,药耗少、能耗低,比较适合小规模含盐废水的综合处理。  相似文献   

17.
焙烧态镁铝铁类水滑石对磷酸根离子的吸附   总被引:2,自引:0,他引:2  
印露  雷国元  李陈君  刘志军 《环境化学》2012,31(7):1049-1056
用共沉淀法制备了镁铝铁三元类水滑石(LDH),在不同温度下对其焙烧4 h,得到焙烧态类水滑石(CLDH).采用XRD、FT-IR对材料进行分析,研究其对水中磷酸根的吸附性能和机制.结果表明,铁的掺杂量过大会破坏类水滑石的层状结构,且随着铁含量的增大,类水滑石对磷酸根的吸附量逐渐减小.当Mg/Al/Fe物质的量之比为2∶0.9∶0.1,在300℃下焙烧时,CLDH吸附磷酸根能力最好,吸附容量约27.03 mg.g-1,为焙烧前的1.32倍.在pH 4—11范围内,在竞争离子存在的条件下,CLDH-0.1-300都能表现出较好的吸附性能,对实际废水中的磷也有较强的吸附能力.CLDH-0.1-300对磷酸根的吸附符合二级反应动力学模型,吸附等温线符合Langmuir等温式.用浓度为0.5 mol.L-1的NaOH溶液可以对吸附磷酸根后的类水滑石CLDH-0.1-300实现解吸再生,"吸附-再生-再吸附"循环3次后吸附容量仍接近初始值的60%.  相似文献   

18.
酞菁锌改性介孔分子筛催化降解孔雀石绿   总被引:1,自引:0,他引:1  
陈伟  毕程  李婷婷  郭晶 《环境化学》2012,31(7):1043-1048
以介孔分子筛MCM-41为载体,采用浸渍法将1,4,8,11,15,18,22,25-八环戊氧基酞菁锌(α-CyOPcZn)负载到分子筛上得到了一种新型的催化剂CyOPcZn/MCM-41.并通过氮气吸附、红外光谱扫描及电镜扫描对催化剂的结构进行表征.考察了该催化剂的用量、H2O2浓度对孔雀石绿降解作用的影响.实验结果表明,在模拟可见光照射下,当催化剂用量0.6 g.L-1、H2O2浓度为0.1 mmol.L-1时,60 min后使0.1 mmol.L-1的孔雀石绿水溶液的脱色率达到98.6%,并呈现出一级反应的动力学特征,速率常数k为0.0891 min-1.催化剂重复使用3次后,脱色率可达96%以上.  相似文献   

19.
应用超声提取技术,结合硅胶-中性氧化铝柱层析净化分离,BSTFA+1%TMCS衍生,及气相色谱-质谱定性定量技术,建立了海洋表层沉积物中8种甾醇类化合物的定量分析方法.实验采用正交实验优化了提取过程中提取剂种类、试剂体积和超声时间,同时对比并优化了柱层析淋洗液的配比、用量以及衍生剂的用量.结果表明,50 mL二氯甲烷/甲醇(V/V,2∶1),超声40 min,超声3次,总甾醇的萃取率可达99.6%;3 g硅胶+2 g中性氧化铝层析,35 mL二氯甲烷/甲醇(V/V,9∶1)淋洗净化回收最佳;8种甾醇在0—848μg.L-1范围内有良好的线性关系;方法检测限为1.2—2.4 ng.g-1.在3种浓度水平0.05、0.1和1.0μg.g-1下,其平均回收率为76.2%—100.9%,相对标准偏差为1.0%—10.3%.应用本方法检测大连湾的3个沉积物样品,8种甾醇的含量在0.079—6.833μg.g-1范围内.本方法的灵敏度高、准确度好,适合用于沉积物样品中甾醇物质的检测要求.  相似文献   

20.
以有机氯农药生产企业工业场地污染土壤为对象,研究Tween80、TritonX-100和SDS这3种表面活性剂对土壤中氯丹(α-氯丹和γ-氯丹)、灭蚁灵、七氯、硫丹(α-硫丹和β-硫丹)的增溶洗脱效应.结果表明,3种表面活性剂对土壤中的有机氯农药均具有一定的增效洗脱作用,且洗脱去除率随表面活性剂添加量升高而逐渐增加.3种表面活性剂对土壤中氯丹、硫丹和七氯的去除率明显高于灭蚁灵,TritonX-100对灭蚁灵的去除率明显高于SDS和Tween80.Tween80和TritonX-100添加量为10g·L-1、SDS添加量为8.50g·L-1时,对土壤中4类有机氯农药的总去除率最高,分别为32.8%、59.7%和60.1%.对于该类污染场地土壤,选择10g·L-1 TritonX-100溶液在50℃条件下振荡5min时洗脱效果最好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号