首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The United States and the European Union each generate around 6900 million dry tons of sewage sludge annually. This is disposed of by land application, landfilling, incineration and other approaches. Reductive hydrothermal (HT) treatment refers here to simple aqueous systems heated and pressurized above 300 degrees C/100bar under anoxic and/or reducing conditions. The purpose of this study was to examine the HT treatment of municipal sewage sludge and infectious fecal microbial cultures with respect to waste volume reduction, biological sterilization, and the generation of usable hydrocarbon product mixtures. These endpoints from HT treatment also were compared to those from pyrolysis. HT at 400 degrees C/150bar transformed sewage sludge solids into complex gas phase (4%) and liquid (6%) hydrocarbon mixtures (approximately 11% combined yield), along with similar amounts (5%) of solid residues. HT products in the aqueous phase (e.g., alcohols) were present but not analysed. Viable mixed fecal cultures (10(9) colony forming units/mL) were completely sterilized by HT treatment, and a hydrocarbon mixture also was generated from the cells, but it was markedly different from that resulting from HT of the sludge. The hydrocarbon assemblage generated from the sludge included n-hydrocarbons (C(9)-C(20)) and alkyl substituted benzenes, phenols, and related compound series of higher mass (e.g., indanes, naphthalenes). Light aromatic parent compounds were significantly less abundant than their substituted C(1)-C(5) alkyl series and there was a paucity of N-, O- and S-heterocycles and polycyclic systems with more than three fused rings. This was different from the products of pyrolysis which were dominated by a relatively simple mixture of linear and branched hydrocarbons and their oxidized homologues (e.g., aldehydes).  相似文献   

2.
The study of the ceramic characteristics of sludge ashes, alone or mixed with additives (kaolin, montmorillonite, illitic clay, powdered flat glass) includes characterization of additives, preparation of probes (dry or wet mixed), thermal treatment (up to 1200 degrees C, except melting or deformation) and control (densities, compressive strengths and water absorption). Thermal treatment increases the density and compressive strength of probes (both parameters go through maxima, with later decreases) and decreases the absorption of water. The densification is also revealed by the evolution of the ratio of decrease of volume/loss of mass. The maximum values of compressive strengths were obtained for 25% of illitic clay, montmorillonite and glass powder. Densification concerning probes with sludge ashes alone does not occur with kaolin. Experimental data were adjusted to exponential relationships between compressive strengths and densities for every composition, and also to a general equation for all probes. The apparent density obtained was adjusted to a non-linear dependence with temperature, leading to a maximum in density and permitting calculating the temperature of occurrence of this maximum. The adjustment was not possible for probes containing kaolin, requiring presumably higher temperatures to densify. Water absorption has low values for ashes or kaolin probes, intermediate values for illite and powdered flat glass probes and high values for montmorillonite probes. Excepting with kaolin, ceramic materials with better characteristics than sludge ashes without additives were obtained at lower treatment temperatures.  相似文献   

3.
The purpose of this study is to introduce an efficient drying method named “fry-drying technology” for the treatment of sewage sludge. The basic principle of this method lies in the rapid escape of moisture from sludge material through its pores into the oil medium driven by the strong pressure gradient formed between sludge and oil media. This beneficial pressure distribution for moisture transfer can be established by the subtle combination of the difference of physical properties of specific heat and boiling temperature between water and oil. In order to determine the physical characteristics of this fry-drying technology, a series of experiments were performed in which important parameters, such as heating oil temperature, drying time, oil type, and sludge size, were varied. Numerical calculations using a single solid spherical particle model without any porosity were used to resolve the particle size effect associated with sludge drying.  相似文献   

4.
从生活污水处理工艺出发介绍污泥产生的环节,探究污泥传统处置方法和资源化处置方法,同时对污泥源头减量化方法做了详细论述,最后分析了污泥处置成本的影响因素,对污泥环保处置提供参考与帮助.  相似文献   

5.
This paper aims at characterizing the quality of different treated sludges from Paris conurbation in terms of micropollutants and assessing their fate during different sludge treatment processes (STP). To achieve this, a large panel of priority and emerging pollutants (n = 117) have been monitored in different STPs from Parisian wastewater treatment plants including anaerobic digestion, thermal drying, centrifugation and a sludge cake production unit. Considering the quality of treated sludges, comparable micropollutant patterns are found for the different sludges investigated (in mg/kg DM – dry matter). 35 compounds were detected in treated sludges. Some compounds (metals, organotins, alkylphenols, DEHP) are found in every kinds of sludge while pesticides or VOCs are never detected. Sludge cake is the most contaminated sludge, resulting from concentration phenomenon during different treatments. As regards treatments, both centrifugation and thermal drying have broadly no important impact on sludge contamination for metals and organic compounds, even if a slight removal seems to be possible with thermal drying for several compounds by abiotic transfers. Three different behaviors can be highlighted in anaerobic digestion: (i) no removal (metals), (ii) removal following dry matter (DM) elimination (organotins and NP) and iii) removal higher than DM (alkylphenols – except NP – BDE 209 and DEHP). Thus, this process allows a clear removal of biodegradable micropollutants which could be potentially significantly improved by increasing DM removal through operational parameters modifications (retention time, temperature, pre-treatment, etc.).  相似文献   

6.
Phosphorus (P) is an essential element for all living organisms and cannot be replaced. Municipal sewage sludge is a carrier of phosphorus, but also contains organic pollutants and heavy metals. A two-step thermal treatment is suggested, including mono-incineration of sewage sludge and subsequent thermochemical treatment of the ashes. Organic pollutants are completely destroyed by mono-incineration. The resulting sewage sludge ashes contain P, but also heavy metals. P in the ashes exhibits low bioavailability, a disadvantage in farming. Therefore, in a second thermochemical step, P is transferred into mineral phases available for plants, and heavy metals are removed as well. The thermochemical treatment was investigated in a laboratory-scale rotary furnace by treating seven different sewage sludge ashes under systematic variation of operational parameters. Heavy metal removal and the increase of the P-bioavailability were the focus of the investigation. The present experimental study shows that these objectives have been achieved with the proposed process. The P-bioavailability was significantly increased due to the formation of new mineral phases such as chlorapatite, farringtonite and stanfieldite during thermochemical treatment.  相似文献   

7.
Bangkok (Thailand) covers more than 1500 km2 and has 10 million inhabitants. The disposal of wastewater is creating huge problems of pollution. The estimated amount of sewage sludge was estimated to be around 108 tonnes dry matter (DM) per day in 2005. In order to find a lasting way of disposal for this sewage sludge, the suitability of the sludge produced from three waste-water treatment plants for use as fertilizing material was investigated. Monthly samplings and analysis of sewage sludge from each plant showed that the composition of sludge varied according to the area of collection and period of sampling, and there was no link to rainfall cycle. Plant nutrient content was high (i.e. total N from 19 to 38 g kg(-1) DM) whereas organic matter content was low. The concentrations of heavy metals varied between sludge samples, and were sometimes higher than the E.U. or U.S. regulations for sewage sludge use in agriculture. Faecal coliforms were present in the sludge from one of the plants, indicating a possible contamination by night soil. In order to decrease this potentially pathogenic population the sewage sludge should be heated by composting. As the C/N ratio of sewage sludge was low (around 6) some organic by-products with high carbon content could be added as structural material to enhance the composting.  相似文献   

8.
This research studied the characteristics of dried sewage sludge using TGA to co-fire dried sewage sludge with coal in power plants. The sewage sludges that were discharged from Daejeon, Korea were dried and examined fundamental properties to use them as a fuel. Also, the properties of bituminous coal and wood pellet, which are used in domestic coal power plants, were analyzed and compared with them of sewage sludges and non-isothermal analyses of dried sewage sludges were performed at the heating rates of 5, 10, 20, and 30C /min using TG analyzer to investigate the basic combustion characteristics. As a results of these TGA/DTG analyses, sewage sludges showed its primary peak at the temperature of 250–500?°C, which overlapped with main peak of wood and secondary peak at around 500–600?°C, which overlapped with main peak of coals. Also for the interpretation by Friedman method, the activation energies in the section of highest weight loss were 525.16 kJ/mole for dried digested sewage sludge, 544.88 kJ/mole for dried excess sewage sludge, 203.86 kJ/mole for wood pellet and 146.4585 kJ/mole for bituminous coal. The reaction orders for dried digested excess sewage sludge, dried excess sewage sludge, wood pellet and bituminous coal were 28.775, 24.319, 18.398 and 9.1005, respectively, and the frequency factors were 5.89?\(\times \hspace{0.17em}\)1028, 1.65?\(\times \hspace{0.17em}\)1024,, 9.59?\(\times \hspace{0.17em}\)1016 and 1.77?\(\times \hspace{0.17em}\)108 for each, respectively.  相似文献   

9.
In order to separate and reuse heavy and alkali metals from flue gas during sewage sludge incineration, experiments were carried out in a pilot incinerator. The experimental results show that most of the heavy and alkali metals form condensed phase at temperature above 600 degrees C. With the addition of 5% calcium chloride into sewage sludge, the gas/solid transformation temperature of part of the metals (As, Cu, Mg and Na) is evidently decreased due to the formation of chloride, while calcium chloride seems to have no significant influence on Zn and P. Moreover, the mass fractions of some heavy and alkali metals in the collected fly ash are relatively high. For example, the mass fractions for Pb and Cu in the fly ash collected by the filter are 1.19% and 19.7%, respectively, which are well above those in lead and copper ores. In the case of adding 5% calcium chloride, the heavy and alkali metals can be divided into three groups based on their conversion temperature: Group A that includes Na, Zn, K, Mg and P, which are converted into condensed phase above 600 degrees C; Group B that includes Pb and Cu which solidify when the temperature is above 400 degrees C; and Group C that includes As, whose condensation temperature is as low as 300 degrees C.  相似文献   

10.
Water deficit and soil degradation have become some of the major problems for crop production in semi-arid regions, as it is the South East of Spain. As a matter of fact, considerable productivity loss and risk of erosion have to be taken into account in these areas, especially those with an horticultural use (Davis, 1989). Utilization of sewage sludge in agriculture. Agricultural Progress 64, 72-80]. Horticultural soils are highly vulnerable and prone to erosion, as vegetables are generally fast-growing species under intensive exploitation regimes. High-rate chemical inputs contribute to horticultural soil degradation and have a dramatic effect on soil microbial population and nutrient balance whilst, at the same time, have a counter-effect on price competitiveness of the vegetables to be commercialized. In this paper we monitored variations in physical, chemical and biological properties of a cauliflower plot where four increasing quantities of compost were applied. We carried out a three-stage sampling schedule in order to check the effect of compost applications doses. We conclude that a 2 kg compost/m2 application had a positive effect on physical and biological properties of the soil and provides a supply of nutrients to grow cauliflowers on its surface under intensive exploitation regimes without loss in biomass yield.  相似文献   

11.
Co-digestion of grease trap sludge and sewage sludge   总被引:3,自引:0,他引:3  
Redirection of organic waste, from landfilling or incineration, to biological treatment such as anaerobic digestion is of current interest in the Malmö-Copenhagen region. One type of waste that is expected to be suitable for anaerobic digestion is sludge from grease traps. Separate anaerobic digestion of this waste type and co-digestion with sewage sludge were evaluated. The methane potential was measured in batch laboratory tests, and the methane yield was determined in continuous pilot-scale digestion. Co-digestion of sludge from grease traps and sewage sludge was successfully performed both in laboratory batch and continuous pilot-scale digestion tests. The addition of grease trap sludge to sewage sludge digesters was seen to increase the methane yield of 9–27% when 10–30% of sludge from grease traps (on VS-basis) was added. It was also seen that the grease trap sludge increases the methane yield without increasing the sludge production. Single-substrate digestion of grease trap sludge gave high methane potentials in batch tests, but could not reach stable methane production in continuous digestion.  相似文献   

12.
This work aims to evaluate the effects of compost treatment of digested sewage sludge on nitrogen behavior in two soils, a Spodosol and an Oxisol soil. Digested sewage sludge was composted with sawdust and woodchips, diluting the total nitrogen to one-fourth (dry mass basis) of its original value. Then, sludge and compost were added to the two soils on an equivalent dry weight basis to consider the risk of NO3- -N leaching. Compost treatment of sewage sludge has slowed down the release of mineral-N to half in the Spodosol and to one-third in Oxisol soil. As a result, NO3- -N concentrations in soils incubated with compost were less than half of the amounts found from soils incubated with digested sludge. Estimates were made of the maximum monthly nitrate to leach from the four combinations of soil and sludge treatment. Application of digested sludge, at a higher nitrogen application rate, resulted in a higher nitrate leaching potential than application of the compost product. Soil type also played an important role, with the Oxisol having slightly higher estimated leaching potential than the Spodosol. The higher nitrate release rate in the Oxisol is counterbalanced by its higher field capacity to lessen the expected difference between the two soils.  相似文献   

13.
Phosphorous (P) is a limited and non-substitutable resource. Sewage sludge contains significant amounts of P and is therefore a widely applied fertilizer. Due to its organic and inorganic contaminants, sewage sludge is also combusted in industrial facilities as well as in waste incinerators. This study compares five common methods and one novel alternative based on a thermo-chemical process to treat and dispose of sewage sludge with regard to environmental impact, resource recovery, and materials dissipation. The comparison is based on material flow analysis, energy balances, selected LCA impact analysis, and statistical entropy analysis. This work shows that the novel technology combines both advantages of the established practices: organic and inorganic pollutants are either destroyed or removed from the P containing material, and the P returned to the soil exhibits high plant-availability. The novel method also has low emissions. The additional energy requirements should be reduced. However, with regards to sewage sludge P recovery is more important than energy recovery.  相似文献   

14.
15.
In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.  相似文献   

16.
More and more sewage sludge is being produced in China. Safe and economical methods for sewage sludge disposal should be found considering the increase in sewage treatment. In order to verify the feasibility of sludge disposal on newly built highway embankments, five treatments (0, 15, 30, 60 and 120 tons ha−1) of sewage sludge compost (SSC) were added to a silty-clay embankment soil on the Xi-Huang highway. The results showed that amendment with SSC increased soil available N, available P, organic matter, cation exchange capacity, and water content, and decreased soil bulk density. Application of SSC enhanced ryegrass growth and reduced runoff and soil erosion. Heavy metal losses from sediments in runoff remained constant or decreased relative to the control until a rate of 60 tons ha−1 was exceeded, when heavy metal losses appeared to increase.  相似文献   

17.
Tokyo has historically suffered from a shortage of final disposal sites for the treated sewage sludge. Given this situation, sludge recycling and incineration have been promoted to reduce the volume of treated sludge conveyed to the disposal site, and the recycling options have changed since the late 1990s. This study aims to revisit the sewage sludge treatment and recycling processes in Tokyo and to evaluate different recycling options (brick, aggregate, refuse derived fuel and slag) from the energy consumption perspective by clarifying the complex flow of treated sludge within Tokyo's 23 wards. The study also estimates environmental loads associated with the operation of the whole sludge management system in the area. The environmental loads include: (1) total energy consumption and (2) gas emissions (greenhouse and acidification gases). The estimation was carried out for the years 1995, 1997, 1999 and 2001, during which a drastic change in recycling options occurred. The results indicated that the production of refuse derived fuel was the most energy consuming recycling option while aggregate production is the least energy consuming. They also showed that despite the increasing sludge volume, the energy consumption associated with the operation of the whole system decreased during the period while the gas emissions increased.  相似文献   

18.
Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 ± 100 °C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl2. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 °C, 10 and 30 min and 3.4 and 4.6 m s−1. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu.In the pellet, three major reactions occur: formation of HCl and Cl2 from CaCl2; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl2 out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.  相似文献   

19.
Mechanical properties of dewatered sewage sludge   总被引:1,自引:0,他引:1  
The mechanical properties of dewatered, anaerobically digested sewage sludge were determined from soil laboratory tests. The sludge material is largely composed of organic clay sized-particles, a sizable fraction of which is in an active state of biological digestion which can continue over many years under field conditions. Moderately digested sludge material was found to have a typical specific gravity of solids value of 1.55, and loss on ignition (LOI) value of 70% dry mass. Strongly digested sludge, produced by digesting the liquid sludge further at 35 degrees C in the laboratory, was found to have a lower LOI value of 55% dry mass, and a higher specific gravity of solids value of about 1.72. The maximum dry density of 0.56 tonne/m3 for the dried sludge material was produced using standard Proctor compaction at roughly 85% moisture content (54% solids content). Air-dried, compacted sludge material was tested in quick-undrained triaxial compression and vane shear. Undrained shear strength-moisture content plots are presented. Shear strength values measured in triaxial compression and vane shear were consistent. The effective angle of shearing resistance (phi') was determined from consolidated-undrained, triaxial compression tests on pasteurized, normally consolidated samples of the sludge material. The mechanical properties of the sludge material changed with the level of sludge digestion. The phi' value increased from 32 degrees for moderately digested sludge, to 37 degrees for strongly digested sludge. The effective cohesion of the sludge material remained zero throughout. The shrinkage, swelling and adhesion properties of the sludge material were also studied. Significant shrinkage occurred as the compacted material dried. The sludge material lost its adhesion below about 95% moisture content (51% solids content). Re-hydration of the dry material caused the bulk volume to double.  相似文献   

20.
通过对一例垃圾焚烧发电厂渗滤液处理站污泥进行鉴定,表明该部分污泥不属于危险固废,可以纳入焚烧炉与生活垃圾一起处理.鉴别结果为促进固体废物循环利用及同类企业合理处置渗滤液处理站污泥提供了借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号