首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
为了掌握Y型通风采空区气体的分布规律,进一步为采空区瓦斯及火灾防治工作提供理论依据,基于采空区“O”型冒落压实和遗煤耗氧的非均匀性,针对Y型通风系统建立非均质采空区内气体渗流数值模型,采用Fluent数值模拟软件对采空区漏风流场和各组分气体浓度场进行模拟分析。结果显示:瓦斯和氧气浓度场在Y型通风采空区内大致呈“L”形分布;风流集中由工作面上、下隅角进入采空区;沿空留巷侧的瓦斯浓度高于运输巷侧,而氧气浓度却恰恰相反;两进一回的Y型通风方式能有效解决瓦斯在工作面上隅角积聚的问题;在采空区深部靠沿空留巷侧存在一个扇形的高瓦斯浓度区域,而该区域氧气浓度较低;采空区自燃危险区域在运输巷侧分布更广,应适当采取防火措施。  相似文献   

2.
为掌握分段留巷Y型通风工作面流场及瓦斯浓度在三维空间上的分布规律及采空区高瓦斯浓度区域分布范围,采用现场试验、数值分析和理论分析的方法,分别在检修班和采煤班对工作面、沿空留巷内的流场和瓦斯浓度进行了三维实测,同时借助自主研发的"一种采空区瓦斯浓度区域分布三维实测装置"对靠近留巷侧采空区瓦斯空间分布进行了三维实测和重构。研究结果表明:两进风巷道在靠近工作面煤壁交叉口拐角处风速减小而瓦斯浓度升高,工作面内高瓦斯浓度区域为靠近煤壁上方区域和与沿空留巷交叉口靠近采空区侧,沿空留巷内靠近采空区上角位置瓦斯浓度较高;近留巷侧采空区在距工作面垂直距离35~45 m和距沿空留巷垂直距离25~50 m范围内的采空区上部空间形成瓦斯集聚;工作面采用Y型通风方式时,工作面上隅角瓦斯集聚的问题能够得到很好的解决,但在靠近留巷的采空区内部一定范围内形成高瓦斯浓度区域。  相似文献   

3.
运用Y型通风方式可解决传统U型通风难以解决的上隅角和回风巷瓦斯浓度超限问题.为了对比分析U型和Y型通风采空区瓦斯运移及分布规律,建立了U型通风和Y型通风采空区物理模型,运用Fluent软件对U型通风和Y型通风方式采空区漏风流场、漏风量(沿采空区边界风速分布)和瓦斯体积分数分布进行数值模拟.结果表明,Y型通风回采工作面采空区漏风流场与U型通风分布有较大差别.Y型通风时工作面端头0~30 m时漏风约占工作面漏风量的50%,且总漏风量较U型通风时多,可避免采空区高浓度瓦斯积聚.采用两进一回Y型通风可从根本上解决上隅角瓦斯积聚和回风巷瓦斯超限问题.  相似文献   

4.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

5.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

6.
Y型通风下采空区瓦斯运移规律及治理研究   总被引:1,自引:0,他引:1  
为了更好的研究Y型通风系统下的采空区的瓦斯流动和涌出规律,针对综放面Y型通风系统特点,建立了Y型通风采空区流场模拟的计算流体力学模型。通过数值模拟,系统研究了Y型通风采空区流场和瓦斯运移规律,对比分析了Y型通风和U型通风条件下的采空区流场及瓦斯运移特征,并将其应用于15120高瓦斯综采工作面的Y型通风系统中,根据现场的实际情况建立对应的CFD模型,得出Y型通风系统下采空区瓦斯流动及分布规律,数值模拟结果与现场大量观测数据相吻合,为瓦斯治理和通风系统优化提供理论依据。研究表明,采用Y型通风系统可消除采空区向上隅角的集中漏风,从而有效解决了U型通风上隅角瓦斯积聚和回风巷中的瓦斯。  相似文献   

7.
传统的U型通风工作面上隅角瓦斯积聚现象经常出现,严重制约着矿井正常生产能力的有效发挥,对矿井安全生产造成重大威胁。基于前人对采空区非均质多孔介质气体运移理论的研究,采用Fluent软件数值模拟研究了U型和上隅角埋管条件下U型通风系统的静压力场和瓦斯浓度场。研究结果表明:在相同的模型参数条件下,U型通风容易造成上隅角瓦斯积聚,上隅角瓦斯超限问题十分严重;采空区5m处埋管,治理上隅角瓦斯积聚的效果欠佳,达不到安全开采的条件;15m处埋管可以较好的解决上隅角瓦斯超限问题,工作面没有出现瓦斯积聚现象,工作面和回风巷的瓦斯浓度始终处于1%以下;25m处埋管的效果与15m基本相同,没有表现出更好的瓦斯治理效果。综合数值模拟的结果,确定了上隅角埋管抽放采空区瓦斯的理想抽放位置为距离地板垂高1.2m、沿走向深入采空区15m处。  相似文献   

8.
为实现保护层开采工作面生产过程中瓦斯不超限,在分析工作面瓦斯来源的基础上,提出了保护层开采工作面竖向分层治理瓦斯的思路。根据相似模拟结果,分析了采空区瓦斯流动范围和流动范围内孔隙率、风阻分布特征。采用数值模拟分析了Y型通风、Y型通风+采空区埋管及Y型通风+采空区埋管+高抽巷+高位钻场3种瓦斯治理方式下采空区瓦斯体积分数场,结果表明:采空区瓦斯体积分数在竖直方向和水平方向均具有典型的递变特征,距工作面越远,距煤层越高,瓦斯体积分数越大;合适位置的煤层顶板高抽巷对抽采来自上邻近层的瓦斯具有较好的效果,试验条件下高抽巷抽采瓦斯量达到了总量的36.4%~63.6%;沿充填墙的采空区埋管不能完全拦截下层采空区进入沿空巷的采空区瓦斯,随沿空巷长度增加,瓦斯体积分数增大,建议沿空巷长度控制在250 m范围内。  相似文献   

9.
漏风对煤自燃有重要影响,研究漏风形成机制对工作面采空区防火具有重要的作用。针对采空区瓦斯抽采、上覆围岩裂隙发育对采空区漏风影响问题,以沙曲矿沿空留巷综放工作面为研究背景。根据采空区上覆煤岩特性选择经验公式计算采空区裂隙发育高度,分析了沿空留巷侧采空区上覆裂隙发育,现场实测了沿空留巷压埋管及高位钻孔中气体体积分数,并根据实测参数利用数值模拟分析了瓦斯抽采条件下采空区风流流场变化。结果表明:上覆裂隙成为采空区漏风通道,导通距离在27.2~37.2 m;在沿空留巷侧采空区回采距离100m,其氧气体积分数在10%以上,验证了采空区漏风去向;模拟结果显示,沿空留巷侧采空区立体空间范围内氧气体积分数均达到10%以上,模拟结果与实测基本保持一致。最终确定瓦斯抽采条件下沿空留巷的布置及煤岩裂隙发育是形成漏风通道的主要原因。  相似文献   

10.
为了实时动态监测采空区构筑物漏风情况,自主研发了一种井下采空区构筑物漏风实测装置。通过现场实测及应用,研究结果表明:风流从工作面上进风口漏入采空区,而采空区中风流一部分通过与工作面之间的漏风流进入工作面下进风口,在下隅角位置附近形成一个涡流区;另一部分风流穿过沿空留巷构筑物进入留巷内,由于采空区的压实程度不同,采空区侧留巷内漏风速度曲线近似呈“L”型下降;通过收集分析留巷内漏风气体,其结果可反映采空区中瓦斯浓度分布情况,为采空区瓦斯治理提供了一种新的监测技术手段,且能有效地降低采空区瓦斯事故发生率,保证矿井的安全生产。  相似文献   

11.
随着煤层开采深度的增加,煤层瓦斯含量不断增加,采空区瓦斯涌出量也随之上升,"U"型通风方式容易出现上隅角瓦斯超限等问题,影响煤矿安全生产,而"U+L"型通风方式中滞后横川和瓦斯抽放的运用对消除上隅角瓦斯超限和工作面瓦斯防治具有明显的作用。根据尾巷、横川及上隅角处瓦斯浓度符合规程且工作面横川间距最远时最经济合理的原则,针对平煤六矿戊8-22310工作面实际情况,利用Fluent软件模拟了尾巷有、无抽放时采空区瓦斯分布规律,得出了尾巷有抽放时和无抽放时最远横川间距。研究成果对"U+L"型工作面横川间距确定及工作面瓦斯防治提供了理论指导。  相似文献   

12.
合理长度的挡风帘可以有效减少工作面漏风量,避免瓦斯超限、爆炸等事故发生,保证工作面安全生产。模拟了有无挡风帘时和不同挡风帘长度时“U+L”型通风综采面采空区流场、瓦斯分布及上隅角等地瓦斯情况,验证了数学模型和参数的适用性,分析了挡风帘对采空区压力分布及瓦斯分布的影响,确定了“U+L”型通风综采面合理挡风帘长度。研究表明:挡风帘对采空区压力及瓦斯分布都有重要影响,挡风帘可以使采空区内特别是挡风帘遮挡区域采空区压力下降、瓦斯浓度升高; 随着挡风帘长度的增加,上隅角瓦斯浓度变化不大,采煤机机尾瓦斯浓度逐渐降低,滞后横川瓦斯浓度呈增大趋势;综合分析确定该采面合理挡风帘长度为120 m。  相似文献   

13.
首采煤层群关键层是消除邻近煤层突出危险性行之有效的方法.以淮南新庄孜煤矿66210工作面为例,在综合分析采空区上覆岩层竖向3带以及瓦斯运移基本条件的基础上,将上被保护层所产生的卸压瓦斯运移路径简化为:被保护层→上覆岩层竖向裂隙→采空区→回风巷.为了保障首采保护层工作面的安全回采,提出并实施了卸压瓦斯综合治理技术,对被保护层卸压瓦斯、首采层顶板裂隙发育区富集瓦斯、采空区瓦斯进行强化拦截抽采.采用沿空留巷Y型通风方式消除上隅角瓦斯积聚,降低风排瓦斯量,工作面回风瓦斯体积分数在0.6%以下,实现了高瓦斯煤层群首采工作面的安全高效生产.  相似文献   

14.
为了进一步探究高抽巷抽采瓦斯效果,对高抽巷的最佳抽采层位进行分析。以常村矿为例,基于紧贴实际采空区碎胀系数分布的“O”型圈理论,依据采空区瓦斯的运移规律,运用FLUENT软件加载自定义UDF对采空区瓦斯分布进行数值模拟,从上隅角瓦斯浓度与抽采浓度2方面,对不同层位高抽巷的抽采效果进行分析,确定高抽巷的最佳层位,并用现场测试数据对数值模拟结果进行验证。研究结果表明:模拟计算结果与现场实测数据基本吻合,所提出的高抽巷最佳抽采层位的确定方法可有效应用于实际;合理的抽采层位不仅能够有效地降低上隅角瓦斯的浓度,而且能够提高抽采的效率。  相似文献   

15.
为进一步研究综放采空区的多场分布特征,以大兴矿N2-706工作面为例,构建"双三"模型,即优化三维"O"型圈采空区冒落非均质多孔介质数学模型及"U"型通风方式下的三维综放采空区物理模型,重点考虑了采空区垂直方向上的孔隙率变化,并实现了孔隙率的三维可视化。运用Fluent软件加载自定义UDF对采空区气体压力分布、漏风场及氧气、瓦斯分布情况进行了数值模拟,得出与实际情况相吻合的采空区气体压力分布、合理漏风量范围内的风流场分布,其中重点分析瓦斯体积分数分布规律。结果表明:考虑三维孔隙率的数值模拟结果收敛性更好,采空区瓦斯的积聚现象不仅出现在采空区顶部,在距底板20~25 m高度的位置就大量上浮,且呈现高体积分数瓦斯积聚分布的特征规律。  相似文献   

16.
针对大流量高位巷瓦斯抽采可能诱发采空区自燃问题,以南山矿18层5分段综放面为研究背景,构建采空区气体渗流分析模型。利用变渗透系数和Forchheimer方程,求解非线性流与层流并存下采空区三维氧气分布。结果表明:高位巷瓦斯抽采使工作面氧气更易沿漏风方向采空区纵深发展,氧化带总体宽度会随抽放流量的提高而增加。在进风侧氧气分布后移程度较小,而回风侧受抽放负压显著影响,出现明显氧气富集区。上下隅角封堵配合注氮,会降低抽放对氧气渗入的诱导影响。依据研究结论,利用综合防火措施消除了高位巷附近潜在的自燃危险。  相似文献   

17.
针对深井高瓦斯低透气性突出煤层群消突和首采层开采卸压瓦斯治理难题,以谢桥煤矿11426工作面开采为例,设计首采中间层无煤柱开采、实现上下突出煤层均消突的技术方案,研究了Y型通风工作面采空区瓦斯及风压分布规律,结合煤层群开采巷道布置条件,提出并实施留巷侧井下暗立眼回风阶段留巷Y型通风技术,强化留巷墙体封闭和留巷采空侧回风立眼封闭等卸压瓦斯抽采技术,实现了深井煤层群首采层工作面的安全高效回采和邻近突出煤层的全面消突。11426工作面回采期间,绝对瓦斯涌出量最大47.67 m3/min,工作面瓦斯抽采率高达65%以上,研究成果为今后类似深井煤层群开采的卸压瓦斯抽采和治理提供技术指导。  相似文献   

18.
本文研究矿井综采作业面附近毒害气体的积聚过程和分布规律。由"U"型通风作业面实际情况出发,提出作业面几何模型和气体流动的动力学控制方程,运用数值分析方法跟踪以CH_4和CO为代表的毒害气体在正常通风作业面的积累和分布情况。计算结果证实,作业面煤层和采空回填区释放出的CH_4和CO因局部涡流作用在回风巷隅角积聚,气体浓度经历升高而后逐渐稳定的过程;设备附近的毒害气体积聚过程与回风巷隅角类似,但积聚速度较快。迎风面附近CH_4和CO气体浓度相对较低;受上浮效应影响,背风面的毒害气体浓度积聚过程主要发生在背风面中上部。在常规通风条件下,局部CH_4浓度已超出安全规程允许的最高值,CO浓度亦达到危害人体健康的水平。本项工作获得的认识为作业面附近毒害气体监测和控制提供指导。  相似文献   

19.
为了研究“U+I”型工作面进风量和顶板巷抽采负压对工作面瓦斯浓度与采空区氧化带宽度的影响,协调瓦斯抽采和浮煤自燃之间的关系。以2306综放面为工程背景,基于“U”型冒落岩层孔隙率分布公式和流体通用控制方程建立采空区数值模拟解算模型。采用CFD软件对不同进风量、不同抽采负压下的工作面瓦斯浓度和采空区氧化带宽度进行模拟,结果表明:随着工作面风量的增加,工作面和顶板巷瓦斯浓度减小,但工作面处浓度减幅逐渐变小而顶板巷浓度减幅几乎不变;提高顶板巷抽采负压,对减少工作面瓦斯浓度效果明显,顶板巷自身瓦斯浓度先增加再减小,采空区进风侧氧化带宽度变窄,回风侧和采空区中部氧化带宽度增加,总体上增加了采空区浮煤自燃的危险性但影响程度有限。  相似文献   

20.
为探究深部邻近采空区多漏风通道对煤自燃“三带”的影响,以唐山矿0291工作面为工程背景,采用FLUENT软件模拟多漏风环境采空区内氧气浓度的分布规律,并依此划分不同漏风条件下采空区自燃危险区域;在工程现场设置束管监测装置监测采空区内氧气浓度,依据监测数据对模拟结果进行现场验证。模拟结果表明:随工作面推进,采空区上下隅角相邻区域形成多漏风通道且漏风量增加,漏风导致采空区散热带和氧化带向深部运移,其进、回风巷氧气浓度大于8%的范围由64、40m增至101、80.2m。现场验证表明:束管监测工作面采空区氧化带宽度与数值模拟结果误差小于5%,模拟结果得以验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号