首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
Around 76% of the world's population lives in developing countries where more fertilizer-N is currently applied than in developed countries. Fertilizers are applied preferentially in regions where irrigation is available, and soil and climatic conditions are favorable for the growth of crop plants. Due to low N application rates during the last 3 or 4 decades, negative N balances in the soil are a characteristic feature of the crop production systems in developing countries. In the future, with increasing fertilizer-N application rates, the possibility of nitrate pollution of groundwater in developing countries will be strongly linked with fertilizer-N use efficiency. A limited number of investigations from developing countries suggest that, in irrigated soils of Asia or in humid tropics of Africa, the potential exists for nitrate pollution of groundwater, especially if fertilizer-N is inefficiently managed. In a large number of developing countries in West and Central Asia and North Africa, the small amount of fertilizer applied to soils (mostly Aridisols) that remain dry almost all the year, do not constitute a major threat for nitrate pollution of groundwater, except possibly when soils are irrigated. In Asia and the Pacific regions, where 70% of the fertilizers are used to grow wetland rice on soils with low percolation rates, leaching of nitrates is minimal. Climatic water balance and soil moisture conditions do not favor leaching of nitrates from the small amount of fertilizer-N applied to Oxisols and Ultisols in Latin America. In developing countries located in the humid tropics, attempts have not been made to correlate fertilizer-N use with nitrate level in groundwater; however, fertilizers are being increasingly used. Besides high rainfall, irrigation is becoming increasingly available to farmers in the humid tropics and substantial leaching of N may also increase.  相似文献   

2.
T Backhaus  L H Grimme 《Chemosphere》1999,38(14):3291-3301
Despite their common use the fate and effects of antibiotics in the environment are largely unknown. These compounds may enter the environment through different pathways, resulting in the contamination of waste water or fresh water, where bacteria are most likely the primarily affected organisms. In this paper the toxicity of several drugs, reflecting the most important groups of antibiotics and chemotherapeutics, towards Vibrio fischeri are presented. The chronic bioluminescence inhibition assay with Vibrio fischeri is shown to be sensitive against many of the high volume antibiotics used for veterinary purposes and in aquaculture. Thus the assay may be a valuable tool for an effects assessment and biomonitoring of these xenobiotics. The available data for both parts of the risk assessment procedure--exposure assessment and effects assessment--have to be regarded as insufficient for most antibiotics. When the available data about environmental concentrations of antibiotics are compared with their toxicity towards Vibrio fischeri, direct effects on natural microbial communities are to be expected.  相似文献   

3.
Climate change coupled with increasing demands for water necessitates an improved understanding of the water–food nexus at a scale local enough to inform farmer adaptations. Such assessments are particularly important for nations with significant small-scale farming and high spatial variability in climate, such as Sri Lanka. By comparing historical patterns of irrigation water requirements (IWRs) to rice planting records, we estimate that shifting rice planting dates to earlier in the season could yield water savings of up to 6%. Our findings demonstrate the potential of low-cost adaptation strategies to help meet crop production demands in water-scarce environments. This local-scale assessment of IWRs in Sri Lanka highlights the value of using historical data to inform agricultural management of water resources when high-skilled forecasts are not available. Given national policies prioritizing in-country production and farmers’ sensitivities to water stress, decision-makers should consider local degrees of climate variability in institutional design of irrigation management structures.  相似文献   

4.

Seasonal and regional distributions of 17 polycyclic aromatic hydrocarbons (PAHs) in surface waters from four different main water functional regions of the Baiyangdian Lake were analyzed through GC/MS/MS during spring and summer season. The aim was to identify their possible pollution sources and evaluate their health risk for human and ecotoxicological risk for aquatic organisms. Results showed that the range of total PAH concentration is 35.38–88.06 ng/L (average 46.57 ng/L) in spring and 25.64–301.41 ng/L (average 76.23 ng/L) in summer. PAH contamination was observed slightly lower in the summer season from the pollution characteristics of water bodies in most areas of the Baiyangdian Lake, and the levels of PAH pollution in the water body of urban residential regions and rural residential regions were relatively higher than those in tourist regions and low human disturbance regions. Source analysis based on diagnostic ratios confirmed that combustion sources and petroleum sources were two main sources for PAHs entering into the waters of the Baiyangdian Lake. Human health risk assessment showed that PAHs in surface waters from the Baiyangdian Lake will not cause a potential non-carcinogenic risk to local residents and the carcinogenic risk could mostly be accepted, but the potential lifetime carcinogenic risk for infants in rural residential regions should be concerned about. Urban residential regions and rural residential regions were subject to higher cumulative non-carcinogenic and carcinogenic risk when compared to the other functional regions. Ecotoxicological risk assessment found a moderate risk to aquatic organisms presented by individual PAH and a low risk by total PAHs, and PAHs in the water body of urban residential regions and rural residential regions also have relatively higher harm effects to aquatic organisms compared with the other two functional regions. This study revealed the pollution characteristics of PAHs and their possible sources in waters of the Baiyangdian Lake, clarified its correlation to regional anthropogenic activities, and provided corresponding risk management strategies for human and aquatic organisms.

  相似文献   

5.
In previous studies, boron compounds were considered to be of comparatively low toxicity in the aquatic environment, with predicted no effect concentration (PNEC) values ranging around 1 mg B/L (expressed as boron equivalent). In the present study, we describe an evaluation of toxicity data for boron available for the aquatic environment by different methods.For substances with rich datasets, it is often possible to perform a species sensitivity distribution (SSD). The typical outcome of an SSD is the Hazardous Concentration 5% (HC5), the concentration at which 95% of all species are protected with a probability of 95%. The data set currently available on the toxic effects of boron compounds to aquatic organisms is comprehensive, but a careful evaluation of these data revealed that chronic data for aquatic insects and plants are missing. In the present study both the standard assessment factor approach as well as the SSD approach were applied. The standard approach led to a PNEC of 0.18 mg B/L (equivalent to 1.03 mg boric acid/L), while the SSD approach resulted in a PNEC of 0.34 mg B/L (equivalent to 1.94 mg boric acid/L). These evaluations indicate that boron compounds could be hazardous to aquatic organisms at concentrations close to the natural environmental background in some European regions. This suggests a possible high sensitivity of some ecosystems for anthropogenic input of boron compounds. Another concern is that the anthropogenic input of boron could lead to toxic effects in organisms adapted to low boron concentration.  相似文献   

6.
Antibiotics are frequently used in agricultural systems to promote livestock health and to control bacterial contaminants. Given the upsurge of the resistant fecal indicator bacteria (FIB) in the surface waters, a novel statistical method namely, microbial risk assessment (MRA) was performed, to evaluate the probability of infection by resistant FIB on populations exposed to recreational waters. Diarrheagenic Escherichia coli, except E. coli O157:H7, were selected for their prevalence in aquatic ecosystem. A comparative study between a typical E. coli pathway and a case scenario aggravated by antibiotic use has been performed via Crystal Ball® software in an effort to analyze a set of available inputs provided by the US institutions including E. coli concentrations in US Great Lakes through using random sampling and probability distributions. Results from forecasting a possible worst-case scenario dose-response, accounted for an approximate 50% chance for 20% of the exposed human populations to be infected by recreational water in the U.S. However, in a typical scenario, there is a 50% chance of infection for only 1% of the exposed human populations. The uncertain variable, E. coli concentration accounted for approximately 92.1% in a typical scenario as the major contributing factor of the dose-response model. Resistant FIB in recreational waters that are exacerbated by a low dose of antibiotic pollutants would increase the adverse health effects in exposed human populations by 10 fold.  相似文献   

7.
Antibiotics are released into the environment in a variety of ways: via wastewater effluent as a result of incomplete metabolism in the body after use in human therapy, as runoff after use in agriculture, through improper disposal by private households or hospitals or through insufficient removal by water treatment plants. Unlike in most European countries, in Arctic regions effluents are not suitably treated prior to their release into the aquatic environment. Also, many of the scattered human settlements in remote regions of the Arctic do not possess sewage treatment facilities and pharmaceutical residues therefore enter the aqueous environment untreated. Only limited data are available on the biodegradation of antibiotics under Arctic conditions. However, such information is needed to estimate the potential harm of antibiotics for the environment. Pen-G is used in this study since it is a widely prescribed antibiotic compound whose environmental properties have not yet been investigated in detail. Thus, for a very first assessment, the OECD approved biodegradation Zahn-Wellens test (ZWT, OECD 302 B) was used to study biodegradation and non-biotic elimination of the antibiotic Benzyl-penicillin (Pen-G) at different temperatures (5°C, 12.5°C and 20°C). The testing period was extended from the OECD standard of 28-42d. In addition to dissolved organic carbon (DOC), Pen-G levels and major transformation products were recorded continuously by LC-ion-trap-MS/MS. DOC monitoring revealed considerable temperature dependence for the degradation process of Pen-G. DOC loss was slowest at 5°C and considerably faster at 12.5°C and 20°C. In the initial step of degradation it was found that Pen-G was hydrolyzed. This hydrolyzed Pen-G was subsequently further degraded by decarboxylation, the result of which was 2-(5,5-dimethyl-1,3-thiazolidin-2-yl)-2-(2-phenylacetamido)acetic acid. Furthermore, direct elimination of 2-phenyl-acetaldehyde from the hydrolyzed and decarboxylated Pen-G also led to the formation of 2-[amino(carboxy)methyl]-5,5-dimethyl-1,3-thiazolidone-4-carboxylic acid. Since biodegradation slows down considerably at a low temperature, the resulting transformation products had considerably longer residence times at 5°C compared to higher temperature conditions within the 42-d experiment. The results presented here clearly demonstrate that a risk assessment for pharmaceuticals present in low ambient temperature environments (i.e. the Arctic) cannot be based on test results obtained under standard laboratory conditions (i.e. 20°C ambient temperatures).  相似文献   

8.
Rising human demand and climatic variability have created greater uncertainty regarding global food trade and its effects on the food security of nations. To reduce reliance on imported food, many countries have focused on increasing their domestic food production in recent years. With clear goals for the complete self-sufficiency of rice production, Sri Lanka provides an ideal case study for examining the projected growth in domestic rice supply, how this compares to future national demand, and what the associated impacts from water and fertilizer demands may be. Using national rice statistics and estimates of intensification, this study finds that improvements in rice production can feed 25.3 million Sri Lankans (compared to a projected population of 23.8 million people) by 2050. However, to achieve this growth, consumptive water use and nitrogen fertilizer application may need to increase by as much as 69 and 23 %, respectively. This assessment demonstrates that targets for maintaining self-sufficiency should better incorporate avenues for improving resource use efficiency.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0720-2) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
Severskiy IV 《Ambio》2004,33(1-2):52-62
This paper presents results of the research under the program Global International Waters Assessment (GIWA) for the Aral Sea basin (Subregion 24 of the GIWA program). These results show that the detemining factor for the region is freshwater shortage and the main issue is modification of stream flow. According to GIWA assessment estimations, freshwater shortage is responsible for about 70% of the developmental problems in the region. The current economy is developing under conditions of increasing water deficiency. In spite of increasing efforts by the governments of the countries in the region, and by the international community, the situation in regard to water supply and economic objectives in the countries of central Asia remains tense and shows clear tendencies towards aggravation and conflict. The main causes for this sharpening of ecological and socioeconomic conditions in the region are analyzed, and measures to mitigate stress in transboundary water-resources use are presented.  相似文献   

11.
Present-day climate change scenario has intensified the problem of continuously increasing ground-level ozone (O3), which is responsible for causing deleterious effects on growth and development of plants. Studies involving use of ethylenediurea (EDU), a chemical with antiozonant properties, have given some promising results in evaluating O3 injury in plants. The use of EDU is especially advantageous in developing countries which face a more severe problem of ground-level O3, and technical O3-induced yield loss assessment techniques like open-top chambers cannot be used. Recent studies have detected a hormetic response of EDU on plants; i.e. treatment with higher EDU concentrations may or may not show any adverse effect on plants depending upon the experimental conditions. Although the mode of action of EDU is still debated, it is confirmed that EDU remains confined in the apoplastic regions. Certain studies indicate that EDU significantly affects the electron transport chain and has positive impact on the antioxidant defence machinery of the plants. However, the mechanism of protecting the yield of plants without significantly affecting photosynthesis is still questionable. This review discusses in details the probable mode of action of EDU on the basis of available data along with the impact of EDU on physiological, biochemical, growth and yield response of plants under O3 stress. Data regarding the effect of EDU on plant ‘omics’ is highly insufficient and can form an important aspect of future EDU research.  相似文献   

12.
Dutch water boards have a well-established program for monitoring pesticide contamination of surface waters. These monitoring data have been processed into a graphic format accessible online and designed to provide insight into pesticide presence in Dutch surface waters and trends over time: the Pesticides Atlas (http://www.pesticidesatlas.nl). With this tool one can easily get maps of where a pesticide is being measured and where it might possibly constitute an environmental problem over the years. Presently, results of the periods 1997/1998 until 2005/2006 are available at the level of individual active ingredients. At a national level, the percentage of pesticides concentrations that exceed the maximum tolerable risk has declined 30% to 38% over the years 2003/2004 compared with 1997/1998. This means that surface water quality in the Netherlands has improved with respect to pesticides, however there are still many locations at which the measured concentrations exceed the environmental quality standards. The results on linking land use to pesticides concentrations were shown to assist in optimization of monitoring programs. By developing the present Internet tool, many new opportunities for environmental risk assessment and risk management were identified, e.g. optimization of monitoring strategies and communication to policymakers.  相似文献   

13.
Quantitative structure–activity relationships (QSARs) are an established tool in environmental risk assessment and a valuable alternative to the exhaustive use of test animals under REACH. In this study a QSAR was developed for the toxicity of a series of six chloroanilines to the soil-dwelling collembolan Folsomia candida in standardized natural LUFA2.2 soil. Toxicity endpoints incorporated in the QSAR were the concentrations causing 10% (EC10) and 50% (EC50) reduction in reproduction of F. candida. Toxicity was based on concentrations in interstitial water estimated from nominal concentrations in the soil and published soil–water partition coefficients. Estimated effect concentrations were negatively correlated with the lipophilicity of the compounds. Interstitial water concentrations for both the EC10 and EC50 for four compounds were determined by using solid-phase microextraction (SPME). Measured and estimated concentrations were comparable only for tetra- and pentachloroaniline. With decreasing chlorination the disparity between modelled and actual concentrations increased. Optimisation of the QSAR therefore could not be accomplished, showing the necessity to move from total soil to (bio)available concentration measurements.  相似文献   

14.
Modeling the impact of ozone x drought interactions on regional crop yields   总被引:3,自引:0,他引:3  
The influence of soil moisture stress on crop sensitivity to O3 was evaluated for corn (Zea mays L.), cotton (Gossypium hirsutum L.), soybean (Glycine max L. Merr.), and wheat (Triticum aestivum L.) grown in the United States. This assessment was accomplished by using yield forecasting models to estimate the influence of soil moisture deficits on regional yield and a previously developed model to predict moisture stress x O3 interactions. Reduced crop sensitivity to O3 was predicted for those regions and years for which soil moisture stress reduced yield. The models predicted a drought-induced reduction in crop sensitivity to O3 of approximately 20% for the 1979 to 1983 period; i.e. a hypothetical O3-induced yield reduction of 5% for adequately watered crops would have been reduced to a 4% effect by the 1979 to 1983 distribution of soil moisture deficits. However, predicted drought effects varied between crops, regions, and years. Uncertainties in the model predictions are also discussed.  相似文献   

15.
The assessment of potential risks from microbiological contamination of drinking water supplies is of greatest concern to human health. The study involves the examination of water samples from Agios Georgios source that supplies the capitals, the major towns and several villages of Arta, Preveza and Lefkada prefectures, in Northwestern Greece. The study includes the sanitary inspection survey of the source and the microbiological examination of water samples on a monthly basis during the period February 1996-June 1999 except of Augusts (n=38). The microbiological risk assessment (MRA) approach of World Health Organisation (WHO) guidelines was applied to enhance the source protection. The faecal contamination of the source water was quantified using faecal coliforms (FC) as indicator bacteria. Microbiological analyses indicate that of the 38 samples analyzed the FC failure rate (positive samples) was 63.2% according to the limit set by the 98/83 directive of the European Union. The 36.8% of the source water samples was found in conformity with WHO guidelines, 42.1% of low risk, 21.1% of intermediate risk while there was not found samples of high or very high risk. Failure rates displayed a seasonal trend being greater during the winter, decreased during spring and autumn and lower during summer. This observation was explained partially by a significant positive relationship with the rainfall amount (r(Spearmann)=0.890, P=0.001). The sanitary inspection score was found 5/10 during the whole survey period that corresponds to an intermediate risk of source contamination. The color-code classification for FC contamination was found 36.8% A (blue, no risk), 42.1% B (green, low risk) and 21.1% C (yellow, intermediate risk). The previous risks were combined for the assessment of waterborne risk, which was determined as intermediate to high; therefore there is a need for high action priority. The potential remedial actions were also suggested in order to improve the source protection of such supplies.  相似文献   

16.
To assess environmental risks related to contaminants in soil it is essential to predict the available pool of inorganic contaminants at regional scales, accounting for differences between soils from variable geologic and climatic origins. An approach composed of a well-accepted soil extraction procedure (0.01 M CaCl(2)) and empirical Freundlich-type models in combination with mechanistically based models which to date have been used only in temperate regions was applied to 136 soils from a South European area and evaluated for its possible general use in risk assessment. Empirical models based on reactive element pools and soil properties (pH, organic carbon, clay, total Al, Fe and Mn) provided good estimations of available concentrations for a broad range of contaminants including As, Ba, Cd, Co, Cu, Hg, Mo, Ni, Pb, Sb, Se and Zn (r(2): 0.46-0.89). The variation of the pools of total Al in soils expressed the sorptive capacity of aluminosilicates and Al oxides at the surfaces and edges of clay minerals better than the actual variability of clay contents. The approach has led to recommendations for further research with particular emphasis on the impact of clay on the solubility of As and Sb, on the mechanisms controlling Cr and U availability and on differences in binding properties of soil organic matter from different climatic regions. This study showed that such approach may be included with a good degree of certainty for first step risk assessment procedures to identify potential risk areas for leaching and uptake of inorganic contaminants in different environmental settings.  相似文献   

17.
Padovani L  Capri E 《Chemosphere》2005,58(9):1219-1229
Chlorpyrifos-methyl use in citrus, vineyards and vegetables is extensive and it has become an essential component of pest control in Southern European regions. The objective of this study was to assess surface water and sediment exposure to chlorpyrifos-methyl (RELDAN 22) under field conditions in a citrus orchard in Sicily (Italy). Pesticide drift loadings were measured in a small surface water body situated 0.5-1.0 m from the edge of the treated field. Measured drift values after the application were between 0.04% and 0.19% of the theoretical applied dose and were highly variable. However, the loadings were lower than those measured by other authors, also lower than predicted by regulatory drift models (95th percentile) typically used for aquatic risk assessment in Europe. Most of the variability occurred due to fluctuating wind speed and direction. In water samples collected in the surface water adjacent to the target field, chlorpyrifos-methyl was detected immediately after application, with concentrations ranging from less than the limit of quantification of the analytical method (0.05 microg/l) to a maximum of 0.08 microg/l. Predicted environmental concentrations in water, using the TOXSWA model, were similar to the measured data when measured drift data from the field experiment were used as inputs.  相似文献   

18.
This perspective paper argues for an urgent need to monitor a set of 12 concrete, measurable indicators of food and water security in the Arctic over time. Such a quantitative indicator approach may be viewed as representing a reductionist rather than a holistic perspective, but is nevertheless necessary for actually knowing what reality aspects to monitor in order to accurately understand, quantify, and be able to project critical changes to food and water security of both indigenous and non-indigenous people in the Arctic. More relevant indicators may be developed in the future, taking us further toward reconciliation between reductionist and holistic approaches to change assessment and understanding. However, the potential of such further development to improved holistic change assessment is not an argument not to urgently start to monitor and quantify the changes in food and water security indicators that are immediately available and adequate for the Arctic context.  相似文献   

19.
Dutch water boards have a well-established program for monitoring pesticide contamination of surface waters. These monitoring data have been processed into a graphic format accessible online and designed to provide insight into pesticide presence in Dutch surface waters and trends over time: the Pesticides Atlas (http://www.pesticidesatlas.nl). With this tool one can easily get maps of where a pesticide is being measured and where it might possibly constitute an environmental problem over the years. Presently, results of the periods 1997/1998 until 2005/2006 are available at the level of individual active ingredients. At a national level, the percentage of pesticides concentrations that exceed the maximum tolerable risk has declined 30% to 38% over the years 2003/2004 compared with 1997/1998. This means that surface water quality in the Netherlands has improved with respect to pesticides, however there are still many locations at which the measured concentrations exceed the environmental quality standards. The results on linking land use to pesticides concentrations were shown to assist in optimization of monitoring programs. By developing the present Internet tool, many new opportunities for environmental risk assessment and risk management were identified, e.g. optimization of monitoring strategies and communication to policymakers.  相似文献   

20.
Land use pattern is an effective reflection of anthropic activities, which are primarily responsible for water quality deterioration. A detailed understanding of relationship between water quality and land use is critical for effective land use management to improve water quality. Linear mixed effects and multiple regression models were applied to water quality data collected from 2003 to 2010 from 36 stations in the Huai River basin together with topography and climate data, to characterize the land use impacts on water quality and their spatial scale and seasonal dependence. The results indicated that the influence of land use categories on specific water quality parameter was multiple and varied with spatial scales and seasons. Land use exhibited strongest association with dissolved oxygen (DO) and ammonia nitrogen (NH3-N) concentrations at entire watershed scale and with total phosphorus (TP) and fluoride concentrations at finer scales. However, the spatial scale, at which land use exerted strongest influence on instream chemical oxygen demand (COD) and biochemical oxygen demand (BOD) levels, varied with seasons. In addition, land use composition was responsible for the seasonal pattern observed in contaminant concentrations. COD, NH3-N, and fluoride generally peaked during dry seasons in highly urbanized regions and during rainy seasons in less urbanized regions. High proportion of agricultural and rural areas was associated with high nutrient contamination risk during spring. The results highlight the spatial scale and seasonal dependence of land use impacts on water quality and can provide scientific basis for scale-specific land management and seasonal contamination control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号