首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
浮游球衣菌对Pb2+、Cu2+、Zn2+、Cd2+的吸附性能研究   总被引:8,自引:0,他引:8  
研究了浮游球衣菌(Sphaerotilus natans)在不同吸附条件下对溶液中Pb^2+、Cu^2+、Zn^2+、Cd^2+的吸附规律。结果表明,Sphaerotilus natans对这4种重金属离子均有一定的吸附作用,并在20min内达到吸附平衡,pH对吸附过程影响较大,pH为5.5时Sphaerotilus natans对这4种金属离子的吸附效果最好,Sphaerotilus natans对它们的吸附选择性为Pb^2+〉Cu^2+〉Zn^2+〉Cd^2+,Pb^2+、Cu^2+能部分置换出已被菌体吸附的Zn^2+、Cd^2+。HCI和EDTA溶液可有效地将金属离子从菌体上解吸下来,解吸后的菌体可重复使用。  相似文献   

2.
Metal ion removal from water by sorption on paper mill sludge   总被引:5,自引:0,他引:5  
Chromatographic columns packed with paper mill sludge are employed for metal ion recovery from water. The breakthrough curves show that cadmium, copper, lead and silver are removed from acid solutions (pH 2, 4); the affinity series is Pb(II)>Cu(II)>Ag(I)>Cd(II). Both the amount of metal retained and the metal-matrix interaction are pH dependent; the sorptive capacity increases with increasing pH. When the metals are present together at the same initial concentrations a competition among the different ions occurs although the affinity order remains unchanged. In metal recovery from the paper mill sludge column, the total amount of the cadmium and copper is displaced by HCl 1.0 M, 65% of the lead by HCl 0.1 M and 75% of the silver by HNO(3) 0.1 M. More than 95% of copper and lead and less than 20% of cadmium were recovered with HCl 0.1 M when the metals were present at the same time.  相似文献   

3.
重金属离子在腐植酸上吸附的研究   总被引:32,自引:0,他引:32  
对4种代表性重金属离子在腐植酸上吸附、pH对竞争吸附的影响及其吸附机理进行了研究。结果表明,Cu2+、Pb2+、Zn2+的吸附等温线为F型,而Cd2+等温线为L型;2.5<pH<3.5时,竞争吸咐次序为Cu2+>Pb2+>Cd2+>Zn2+;pH>5.0时,Cd2+>Cu2+>Zn2+>Pb2+;Cu2+在腐植酸上的吸附主要是以与腐植酸形成配合物的方式相互结合。  相似文献   

4.
Four samples of ombrotrophic peat were collected from each of 10 upland locations in a transect from the southern Pennines to the Highland Boundary Fault, a total distance of ca. 400 km. Bulk compositions and other properties were determined. Total contents of Al and heavy metals (Ni, Cu, Zn, Cd, Pb) were determined following digestion with hydrofluoric acid, and concentrations of metals extractable with dilute nitric acid were also measured. Supernatants obtained from aqueous extractions of the peat samples were analysed for pH, major cations and anions, dissolved organic carbon and dissolved metals, and concentrations of free metal ions (Al(3+), Ni(2+), etc.) were estimated by applying a chemical speciation model. Both total and HNO(3)-extractable metal concentrations varied along the transect, the highest values being found at locations close to industrial and former mining areas. The HNO(3)-extractable soil metal contents of Ni, Cu and Cd were appreciably lower than lowest-observed-effect-concentrations (LOEC) for toxicity towards microorganisms in acid, organic rich soils. However, the contents of Zn at two locations, and of Pb at five locations exceeded LOECs, suggesting that they may be exerting toxic effects in the peats. Soil solution concentrations of free heavy metal ions (Cu(2+), Zn(2+), Cd(2+), Pb(2+)) were substantially lower than LOECs for toxicity towards vascular plants, whereas concentrations of Al(3+) were near to toxic levels at two locations.  相似文献   

5.
Evaluation of pectin binding of heavy metal ions in aqueous solutions   总被引:6,自引:0,他引:6  
Kartel MT  Kupchik LA  Veisov BK 《Chemosphere》1999,38(11):2591-2596
Evaluation of adsorption performance of several industrially manufactured pectins towards some toxic heavy metals was carried out. Adsorption isotherms for divalent cations in simulant aqueous solutions were measured and corresponding distribution coefficients were calculated. The following selectivity sequences we found for pectins: Pb2+ > Cu2+ > Co2+ > Ni2+ > Zn2+ > Cd2+. It was shown that a beet pectin exhibits a high affinity for Pb2+ and Cu2+ ions, an apple pectin for Co2+ ion and a citrus pectin for Ni2+ ion. The binding properties of all pectins towards Zn2+ and Cd2+ ions are extremely poor. The quantitative data on adsorption performance of pectins suggest their applicability as food additives or remedies for efficient removal of Pb2+, Cu2+, Co2+, and Ni2+ ions from different biological systems, including human and animal organisms.  相似文献   

6.
This study examined the toxicological interaction between glyphosate (or its formulation, Roundup) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited "less than additive" mixture toxicity, with 48-h LC50 toxic unit > 1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur.  相似文献   

7.
皂化改性橘子皮生物吸附剂对重金属离子的吸附   总被引:3,自引:0,他引:3  
以生物废料橘子皮(OP)为原料,经乙醇、氢氧化钠处理,得到改性橘子皮生物吸附剂SOP,将其用于对重金属离子Cu2+、Pb2+、Cd2+、Zn2+和Ni2+的吸附。研究了溶液pH、吸附时间和重金属离子初始浓度对SOP吸附性能的影响。结果表明,重金属离子在生物吸附剂上的吸附速率快,符合准二级动力学方程。SOP对重金属离子的吸附等温线符合Lang-muir模型,根据Langmuir模型计算SOP对Cu2+、Pb2+、Cd2+、Zn2+和Ni2+的饱和吸附量分别为56.82、152.4、66.27、33.90和23.02 mg/g,均高于改性前。常见阳离子的存在对重金属离子吸附的影响较小,改性后的橘子皮生物吸附剂可以再生重复使用4次以上,是性能良好的重金属离子吸附剂。  相似文献   

8.
Can C  Jianlong W 《Chemosphere》2007,69(10):1610-1616
The relationship between metal ionic characteristics and the maximum biosorption capacity (q(max)) was established using QSAR model based on the classification of metal ions (soft, hard and borderline ions). Ten kinds of metal ions (Ag(+), Cs(+), Zn(2+), Pb(2+), N(i2+), Cu(2+), Co(2+), Sr(2+), Cd(2+), Cr(3+)) were selected and the waste biomass of Saccharomyces cerevisiae obtained from a local brewery was used as biosorbent. Eighteen parameters of physiochemical characteristics of metal ions were selected and correlated with q(max). Classification of metal ions could improve the QSAR models and different characteristics were significant in correlating with q(max), such as polarizing power Z(2)/r or the first hydrolysis constant |logK(OH)| or ionization potential IP. X(m)(2)r seemed to be suitable for metal ions including soft ions, and Z(2)/r, |logK(OH)| and IP suitable for only soft ions or metal ions excluding soft ions. It provided a new way to predict the biosorptive capacity of metal ions.  相似文献   

9.
By using a LKB2277 BioActivity Monitor (heat conduction microcalorimeter), stopped-flow method, the thermogenetic curves of Rhizopus nigricans growth at 25 degrees C inhibited by four kinds of heavy metal ions are determined, parameters such as growth rate constants k, inhibitory ratio I, half inhibitory concentration IC50 et al. are obtained. The experimental results show that heavy metal ions can inhibit Rhizopus nigricans growth obviously, low concentration of Cu2+ has promoting action. The inhibitory sequence is Cd2+ > Hg2+ > Pb2+ > Cu2+, half inhibitory concentration of them are Cd+ 0.8 micro g x ml(-1), Hg2+ 1.7 micro g x ml(-1), Pb2+ 48.0 micro g x ml(-1), Cu2+ 110 micro g x ml(-1). This microclorimetric bioassay for acute cellular toxicity is based on metabolic heat evolution from cultured cells. The assay is quantitative, inexpensive, and versatile; moreover, toxicological information can be obtained with cell from other species of interest.  相似文献   

10.
Simultaneous heavy metal removal mechanism by dead macrophytes   总被引:13,自引:0,他引:13  
The use of dead, dried aquatic plants, for water removal of metals derived from industrial activities as a simple biosorbent material has been increasing in the last years. The mechanism of simultaneous metal removal (Cd2+, Ni2+, Cu2+, Zn2+ and Pb2+) by 3 macrophytes biomass (Spirodela intermedia, Lemna minor and Pistia stratiotes) was investigated. L. minor biomass presented the highest mean removal percentage and P. stratiotes the lowest for all metals tested. Pb2+ and Cd2+ were more efficiently removed by the three of them. The simultaneous metal sorption data were analysed according to Langmuir and Freundlich isotherms. Data fitted the Langmuir model only for Ni and Cd, but Freundlich isotherm for all metals tested, as it was expected. The K(F) values showed that Pb was the metal more efficiently removed from water solution. The adsorption process for the three species studied followed first order kinetics. The mechanism involved in biosorption resulted ion exchange between monovalent metals as counter ions present in the macrophytes biomass and heavy metal ions and protons taken up from water. No significant differences were observed in the metal exchange amounts while using multi-metal or individual metal solutions.  相似文献   

11.
The Microtox bioassay was used to establish dose-response curves for some toxic elements in aqueous solutions, namely, Zn(II), Pb(II), Cu(II), Hg(II), Ag(I), Co(II), Cd(II), Cr(VI), As(V) and As(III). Experiments were carried out at either pH 6.0 or pH 7.0 to indicate that pH may influence the measured toxicity of some elements due to pH-related changes of their chemical speciation. EC20 values, which represent a measurable threshold of toxicity, were determined for each element and were found to rank as Pb(II)>Ag(I)>Hg(II) approximately Cu(II)>Zn(II)>As(V)>Cd(II) approximately Co(II)>As(III)>Cr(VI). These values were compared to the limit concentrations allowed in industrial wastewater according to the official regulations in Catalonia (Spain). It appears that the Microtox test is sensitive enough for detecting some of the tested elements with respect to official regulations of Catalonia (Spain) dealing with pollution control, with the exception of cadmium, mercury, arsenate, arsenite and chromate.  相似文献   

12.
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.  相似文献   

13.
Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.  相似文献   

14.
Chaturvedi PK  Seth CS  Misra V 《Chemosphere》2006,64(7):1109-1114
Release of heavy metals onto the soil as a result of agricultural and industrial activities may pose a serious threat to the environment. This study investigated the kinetics of sorption of heavy metals on the non-humus soil amended with (1:3) humus soil and 1% hydroxyapatite used for in situ immobilization and leachability of heavy metals from these soils. For this, a batch equilibrium experiment was performed to evaluate metal sorption in the presence of 0.05 M KNO(3) background electrolyte solutions. The Langmuir isotherms applied for sorption studies showed that the amount of metal sorbed on the amended soil decreased in the order of Pb(2+)>Zn(2+)>Cd(2+). The data suggested the possibility of immobilization of Pb due to sorption process and immobilization of Zn and Cd by other processes like co-precipitation and ion exchange. The sorption kinetics data showed the pseudo-second-order reaction kinetics rather than pseudo-first-order kinetics. Leachability study was performed at various pHs (ranging from 3 to 10). Leachability rate was slowest for the Pb(2+) followed by Zn(2+) and Cd(2+). Out of the metal adsorbed on the soil only 6.1-21.6% of Pb, 7.3-39% of Zn and 9.3-44.3% of Cd leached out from the amended soil.  相似文献   

15.
A comparative study on metal sorption by brown seaweed   总被引:7,自引:0,他引:7  
Tsui MT  Cheung KC  Tam NF  Wong MH 《Chemosphere》2006,65(1):51-57
This study compared the sorption of Ag, Cd, Co, Cd, Mn, Ni, Pb and Zn by a Ca-treated Sargassum biomass at pH 5.0, under low and high ionic strength (IS) conditions. The sorption isotherms of As [As(V)] and Cr [Cr(III) and Cr(VI)] were also determined at low IS. The isotherm data for the eight cationic metals and Cr(III) were well fitted by Langmuir equations. Generally, the maximum metal uptake (Umax) followed: Cr(III) > Pb approximately Cu > Ag approximately Zn approximately Cd > Ni approximately Mn approximately Co > Cr(VI) > As(V) at low IS and Pb > Cu > Co > Mn approximately Cd > Zn approximately Ag > Ni at high IS. As(V) did not bind to the seaweed at pH 5.0. The results indicated that sorption of Pb was not affected by the increasing IS, though the percentage of free Pb ions in the water was greatly reduced as predicted by the speciation model. High IS lowered Umax by 10-36% (except Co and Pb), and lowered the affinity constant of the metal by 33-91% for all cationic metals, as compared to low IS. Moreover, the removal efficiency of the cationic metals and Cr decreased exponentially with initial metal concentrations and was lower at high IS. Ion-exchange was the mechanism responsible for the cationic metal sorption onto the seaweed, and Na ion interfered with the cationic metal binding through electrostatic interaction. In conclusion, this study showed the differential binding capacity of the Sargassm biomass for different metals and oxidation states and the differential effects of IS. According to the present results, Sargassum may be considered a good biosorbent for cationic metals (especially Pb) in both low and high-salt containing wastewater.  相似文献   

16.
Yuan CS  Lin HY  Wu CH  Liu MH 《Chemosphere》2005,59(1):135-145
This study investigates the partition of heavy metals in both solid and gas phases in the flue gas from municipal solid waste (MSW) incinerators. Six MSW incinerators in Taiwan were examined and heavy metals in the flue gas at the inlets and outlets of air pollution control devices (APCDs) were analyzed. Heavy metals including Hg, Pb, Cd, Zn, Cu and Cr were sampled by USEPA Method 29 and further analyzed using inductively coupled plasma-mass spectroscopy (ICP-MS) and cold vapor atomic absorption spectrometry (CVAAS). Experimental results revealed that the removal efficiencies of the APCDs for the heavy metals Pb, Cd, Zn, Cu and Cr greatly exceeded 90%, but that of Hg did not. Two groups of heavy metals upstream of APCDs were observed. Pb, Cd, Zn, Cu and Cr were present mainly in the solid phase with a solid to gas ratio (S/G) of over 12.3. However, in most cases, mercury appeared mainly in the gas phase with an S/G ratio from 0.15 to 1.04, because it has a low boiling point. Additionally, treatment with the APCDs increased the S/G ratio of mercury because gaseous mercury could be removed by injecting powdered activated carbon (PAC) into the flue gas. Moreover, the distribution of particle sizes in the solid phase was bimodal. Finer particles (d(p)2.5 microm) contained more Cr and Hg.  相似文献   

17.
Concentrations of Hg, Cd, Pb, Ag, Cu, Zn, Cr, Ni, Co, Mn, and Fe in soft tissues, shells and byssus of blue mussel (Mytilus edulis trossulus) from 23 sites along the Polish coast of the Baltic Sea were determined by AAS method. Byssus, as compared with the soft tissue, concentrated more effectively Pb, Cu, Cr, and especially Ag, Ni, Mn and Fe, moderately Hg and Zn and less effectively Cd. Significant inter-regional and inter-size differences in metal concentrations in both soft tissues and byssus were recorded. Highly significant correlations (P<0.01, P<0.05) were observed between tissue and byssal concentrations of Cd, Pb, Ni and Ag. Factor analysis showed clear separation of both the tissue and byssi samples based on their geographic distribution, possibly reflecting a different rate of deposition of clay minerals at the head of the Pomeranian Bay and the Gulf of Gdańsk. The Pomeranian Bay differs from the Gulf of Gdańsk in respect to geological structure of bottom sediments as a substrata for the M. edulis trossulus as well as in relation to various sources of metallic pollutants. From the data obtained in the present study and those reported previously the soft tissue and especially byssus of M. edulis, in contrast to shells, appear to be a significantly better bioindicator for identification of coastal areas exposed to metallic contaminants.  相似文献   

18.
Trace metals in sediments of two estuarine lagoons from Puerto Rico   总被引:11,自引:0,他引:11  
Concentrations of As, Cd, Cu, Fe, Hg, Pb and Zn were evaluated in surface sediments of two estuaries from Puerto Rico, known as San José Lagoon (SJL) and Joyuda Lagoon. Significantly higher concentrations in microg/g dw of Cd (1.8 vs. 0.1), Cu (105 vs. 22), Hg (1.9 vs. 0.17), Pb (219 vs. 8), and Zn (531 vs. 52) were found in sediment samples from SJL when compared to Joyuda Lagoon. Average concentrations of Hg, Pb, and Zn in some sediment samples from SJL were above the effect range median (ERM) that predict toxic effects to aquatic organisms. Enrichments factors using Fe as a normalizer, and correlation matrices showed that metal pollution in SJL was the product of anthropogenic sources, while the metal content in Joyuda Lagoon was of natural origins. Sediment metal concentrations found in SJL were comparable to aquatic systems classified as contaminated from other regions of the world.  相似文献   

19.
Fourteen Azotobacter chroococcum strains isolated from soils of Southern Poland were studied concerning resistance to various xenobiotics: heavy metal ions: Cd(2+,) Cu(2+), Fe(3+), Mn(2+), Pb(2+), Zn(2+), pesticides: herbicides linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and combination of mecoprop ((RS)-2-(4-chloro-2-methylphenoxy)propanoic acid), dicamba (3,6-dichloro-2-methoxybenzoic acid) and MCPA (2-methyl-4-chlorophenoxyacetic acid), fungicide copper oxychloride, insecticide fenitrothion (O,O-Dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate) and eight antibiotics commonly used against Gram-negative bacteria. The tested soils were divided into seven groups of land use: forest, field crop, park, urban lawn, industrial area, garden and fallow land, and were analyzed for the following heavy metal ion concentrations using the atomic absorption spectrometry (AAS) technique: Cd(2+,) Cu(2+), Fe(3+), Mn(2+), Pb(2+), Zn(2+). All strains were resistant to Pb(2+), whereas other metals caused the growth inhibition of the analyzed strains. There was no significant relationship between metal concentrations in the analyzed soils and metal resistance of the isolates. Herbicide linuron did not inhibit the growth of A. chroococcum in any of the concentrations. All other pesticides caused the growth inhibition only in the concentrate forms. All isolates were sensitive to β-lactam antibiotic Meropenem, however high intraspecies differentiation was observed concerning resistance to other antibiotics. The obtained results require further study regarding resistance mechanisms and possible use of the xenobiotic-resistant strains in land rehabilitation.  相似文献   

20.
By ion exchange undesirable ions are replaced by others which don't contribute to contamination of the environment. The method is technologically simple and enables efficient removal of even traces of impurities from solutions. Examples of selective removal of heavy metal ions by ion-exchange are presented. They include removal of Pb(II), Hg(II), Cd(II), Ni(II), V(IV,V), Cr(III,VI), Cu(II) and Zn(II) from water and industrial wastewaters by means various modern types of ion exchangers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号