首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constructed wetlands are a recommended practice for buffering pollutant source areas and receiving waters. A wetland consisting of a sediment trap and two treatment cells was constructed in a Mississippi Delta lake watershed. A 3-h simulated runoff event was initiated (2003) to evaluate fate and transport of atrazine and fluometuron through the wetland. Water samples were collected during a runoff simulation and then afterward at selected intervals for 21 d, and analyzed for the herbicides. Breakthrough patterns for herbicide concentrations in water samples during the first 20 h after simulated runoff showed peak concentrations in the first 6 h, with gradual tailing as the herbicide pulse was diluted in the second, excavated (deeper) cell. Atrazine and fluometuron concentrations in the first (shallower, non-excavated) cell averaged 12- and 20-fold greater, respectively, than those in the second cell following simulated runoff, indicating entrapment in the first cell. Atrazine and fluometuron concentrations in the shallower cell decreased 32% and 22%, respectively, 9 d following simulated runoff, indicating either degradation or sorption to soil or wetland flora. In the excavated cell, concentrations were even lower, and atrazine declined more rapidly than fluometuron. Results indicate constructed wetlands can improve downstream water quality though sequestration or processing of pollutants.  相似文献   

2.
Metolachlor [2-chloro-N-(2-methoxy-1-methylethyl)-2'-ethyl-6'- methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half-life of 27 days in field. The herbicide got leached down to 15-30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0-15 cm and 15-30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half-life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

3.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

4.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine~ amitrole~ simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log Kow) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

5.
Atrazine and metolachlor are extensively used in Ontario, Canada for control of broadleaf weeds and annual grasses in corn. Conservation tillage may alter the physical and biological environment of soil affecting herbicide dissipation. The rate of dissipation of these two herbicides in soil from conventional, ridge and no-tillage culture was followed. Herbicide dissipation was best described by first order reaction kinetics. Half life, the time for herbicide residues to dissipate to half their initial concentration, was unaffected by tillage. Half life for atrazine and metolachlor was similar and ranged from 31 to 66 d. The rate of dissipation decreased in dry years when soil moisture content was low. In a dry year, herbicide residues during the growing season were significantly greater on ridge tops than in the other tillage treatments. However, after harvest no differences in herbicide residues were detected among tillage treatments. Residues of atrazine (6 to 9% of applied) and metolachlor (4 to 6%) were detected in soil before planting a year after application. De-ethyl atrazine, the primary degradation product of atrazine, increased in concentration during the growing season with the greatest concentrations measured at harvest and in years when atrazine dissipated fastest. De-ethyl atrazine one year after application accounted for about 12% of the remaining triazine residue. These herbicide residues would not be phytotoxic to subsequent crops but are a potential source for leaching to ground and surface waters.  相似文献   

6.
Half-lives (t1/2) of two soil incorporated s-triazines (atrazine and prometon) and two thiocarbamate (EPTC and triallate) herbicides were determined in relation to soil moisture content in two California soils. Treated soils were incubated at three moisture levels in aerated glass vials at 25 +/- 1 degree C and were analyzed at 0, 7, 16, 28, 56 and 112 day intervals. Loss of herbicides in all treatments followed first-order kinetics. The t1/2-values of all herbicides decreased with increasing soil moisture and followed an empirical equation, t1/2 = aM(-b) (where t1/2 is half-life; M the moisture content; and a and b are constants). Soil moisture had a greater effect on carbamates than on s-triazines . Prometon exhibited the longest half-life in both soils, whereas EPTC was least persistent in one soil and atrazine in another. The t1/2-values for atrazine, prometon, EPTC, and triallate with medium moisture levels and 10 microg/g concentration were 34.6, 43.2, 25.4 and 38.1 days in sandy loam and 26.5, 44.4, 44.1 and 25.9 days in loamy sand, respectively. Disappearance of 50% of the applied concentrations of most of the herbicide-soil combinations (except EPTC and triallate in one soil) took longer for lower initial concentrations (1 microg/g) than for higher concentrations (10 microg/g).  相似文献   

7.
The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium < fluometuron < prometryn < or = diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

8.
Hexazinone and simazine field dissipation was studied in two different soils from Spain (Toledo and Burgos), devoted to forest nurseries for Pinus nigra. Laboratory experiments (adsorption-desorption isotherms, leaching experiment and degradation study) were carried out to determine possible mechanisms of dissipation. Higher adsorption was observed for hexazinone in Toledo (KfT = 0.69) compare to in Burgos soil (KfB = 0.20) probably due to the higher organic matter (OM) content of Toledo soil. No differences in adsorption were obtained for simazine in both soils (KfT = 1.27; KfB = 1.34). In every case, adsorption was higher for simazine than for hexazinone, in both soils. The total recovery of hexazinone in the leachates from handpacked soil columns was higher in Burgos (100%) than in Toledo (80%), because of the larger adsorption of hexazinone in this last soil. No differences in simazine leaching between both soils were found, although the total amount of pesticide recovered in leachates (40% in the two soils) was lower for simazine than for hexazinone. Finally, lower degradation was found in Burgos (t1/2 = 91 d) vs Toledo (t1/2 = 47 d), directly related with the high OM content of Toledo. No half-life was calculated for simazine in Toledo because no changes in herbicide soil content were observed during the period of time studied. In the case of Burgos, the half-life for simazine was 50 days. The field residues study showed larger persistence of simazine than hexazinone mainly due to the higher adsorption and lower mobility of simazine in the two soils. The lower persistence of hexazinone in Toledo soil than in Burgos soil is related to the larger rainfall occurred in this soil besides the higher degradation of this herbicide observed in Toledo soil. The much lower temperature in Burgos than in Toledo soil during winter contribute to the higher persistence of the two herbicides in Burgos soil.  相似文献   

9.
Abstract

The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac‐sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac‐sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (KoC), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac‐sodium < fluometuron < prometryn < diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac‐sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step ω = [nad / nde ‐1] x 100). Soil type and initial concentration had significant effect on ω. The effect of sorption and desorption properties of these four herbicides on the off‐site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

10.
The chemical fate and movement of pesticides may be subject to transient storage in unsaturated soils during periods of light rainfall, and subsequent release into shallow groundwater by increased rainfall. The objective of this study was to conduct field-scale experiments to determine the relative importance of transient storage and subsequent release of agrichemicals from the vadose zone into potential aquifers. Two field-scale experiments were conducted under a rain exclusion shelter. In the 1x experiment, atrazine and chlorpyrifos were applied at application-rate equivalents (1.6 kg ha(-1) and 1.3 kg ha(-1), respectively). In the 4x experiment, atrazine was applied in an amount that was four times greater than that usually applied to fields (6.7 kg ha(-1)). Water was either applied to simulate rain or withheld to simulate dry periods. In the 1x experiment, atrazine was detected in the water samples whereas chlorpyrifos was not detected in the majority of the samples. The dry period imposed on the treatment plot did not appear to result in storage of the chemicals, whereas the wet period resulted in greater leaching of atrazine, although the concentrations remained less than the Maximum Contaminant Level of 3 microg L(-1). Both chemicals were detected in soil samples collected from a 20- to 30-cm depth, but it appeared that both chemicals dissipated before the field experiment was concluded. It appeared that the one-time application of atrazine and chlorpyrifos at the label rates did not result in a sufficient mass to be stored and flushed in significant concentrations to the saturated zone. When atrazine was applied at 4x and a longer drought period was imposed on the treatment plot, the resulting concentrations of dissolved atrazine were still less than 3 microg L(-1) . Atrazine was detected in only the near-surface (0 to 15 cm) soil samples and the herbicide dissipated before the onset of the dry period in the treatment plot. The results of this field study demonstrated that atrazine and chlorpyrifos were not sufficiently persistent to be stored and then released in significantly large concentrations to the saturated zone. The dissipation half-life of atrazine in the 4x application was about 44 days. This study, in addition to others, suggested that atrazine may be less persistent in surface soil than has been generally reported.  相似文献   

11.
Mineralization of aged atrazine and mecoprop in soil and aquifer chalk.   总被引:1,自引:0,他引:1  
The effect of ageing on the bioavailability and sorption of the herbicides atrazine and mecoprop was studied in soil and aquifer chalk sampled at an agricultural field near Aalborg, Denmark. The herbicides were incubated in sterile soil or chalk up to 3 months prior to inoculation with 5 x 10(7) cells g(-1) (dry weight) of a mecoprop degrading highly enriched culture (PM) or 1 x 10(9) cells g(-1) (dry weight) of the atrazine degrading Pseudomonas sp. strain ADP. As a measure of the bioavailable residues accumulated 14CO2 was measured for 2 months. In both soil and chalk ageing limited the rate of atrazine mineralization, and in chalk the extent of mineralization was reduced as well. The fraction of sorbed atrazine in the soil ranged between 50% and 62%, whereas a maximum of 12% was sorbed in chalk. No impact on the mineralization of aged mecoprop was seen as no sorption of this herbicide on either soil or chalk was measured.  相似文献   

12.
This study evaluates the effect of sewage amendment (SA) on the dissipation of terbuthylazine, its degradation compound desethyl-terbuthylazine, and S-metolachlor in the soil. The experiment was conducted at Padua Experimental Farm (Italy). Herbicides dissipation was evaluated in soils differently fertilized for three years: with inorganic fertilizer, with sewage sludge, and with a combination of them. Terbuthylazine and S-metolachlor were applied on sorghum as a formulated product at a dose of 2.8?L ha?1, and their dissipation was followed for 2.5 months. The concentrations of herbicides and one metabolite in soil were analyzed by liquid chromatography-mass spectrometry. The dissipation of terbuthylazine and S-metolachlor followed a pseudo first order kinetics; they dissipated faster in soil amended only with inorganic fertilizer than in soils amended with sewage or sewage?+?inorganic fertilizer. The reduction in mineralization of the herbicides after sewage addition can be attributed to the reduced herbicide availability to microorganisms. The degradation of terbuthylazine led to the formation of desethyl-terbuthylazine. SA slowed down the formation and the degradation of desethyl-terbuthylazine, leading to a higher amount measured at the end of the incubation. These findings have practical implications for the assessment of the environmental fate of terbuthylazine and S-metolachlor in agricultural areas.  相似文献   

13.
Phenoxy herbicides like 2,4-dichlorophenoxyacetic acid (2,4-D) are widely used in agricultural practices. Although its half life in soil is 7-14d, the herbicide itself and its first metabolite 2,4-dichlorophenol (2,4-DCP) could remain in the soil for longer periods, as a consequence of its intensive use. Microcosms assays were conducted to study the influence of indigenous microflora and plants (alfalfa) on the dissipation of 2,4-D from soils of the Humid Pampa region, Argentina, with previous history of phenoxy herbicides application. Results showed that 2,4-D was rapidly degraded, and the permanence of 2,4-DCP in soil depended on the presence of plants and soil microorganisms. Regarding soil microbial community, the presence of 2,4-D degrading bacteria was detected even in basal conditions in this soil, possibly due to the adaptation of the microflora to the herbicide. There was an increment of two orders of magnitude in herbicide degraders after 15d from 2,4-D addition, both in planted and unplanted microcosms. Total heterotrophic bacteria numbers were about 1x10(8) CFUg(-1) dry soil and no significant differences were found between different treatments. Overall, the information provided by this work indicates that the soil under study has an important intrinsic degradation capacity, given by a microbial community adapted to the presence of phenoxy herbicides.  相似文献   

14.
A four-year field study was conducted to determine the effect of pluviometric conditions on pendimethalin and oxyfluorfen soil dynamics. Adsorption, dissipation and soil movement were studied in a sandy loam soil from 2003 to 2007. Pendimethalin and oxyfluorfen were applied every year on August at 1.33 and 0.75 kg ha?1, respectively. Herbicide soil concentrations were determined at 0, 10, 20, 40, 90 and 340 days after application (DAA), under two pluviometric regimens, natural rainfall and irrigated (30 mm every 15 days during the first 90 DAA). More than 74% of the herbicide applied was detected at the top 2.5 cm layer for both herbicides, and none was detected at 10 cm or deeper. Pendimethalin soil half-life ranged from 10.5 to 31.5 days, and was affected mainly by the time interval between application and the first rain event. Pendimethalin soil residues at 90 DAA fluctuated from 2.5 to 13.8% of the initial amount applied, and it decreased to 2.4 and 8.6% at 340 DAA. Oxyfluorfen was more persistent than pendimethalin as indicated by its soil half-life which ranged from 34.3 to 52.3 days, affected primarily by the rain amount at the first rainfall after application. Oxyfluorfen soil residues at 90 DAA ranged from 16.7 to 34.8% and it decreased to 3.3 and 17.9% at 340 DAA. Based on half-life values, herbicide soil residues after one year, and soil depth reached by the herbicides, we conclude that both herbicides should be considered as low risk to contaminate groundwater. However, herbicide concentration at the top 2.5 cm layer should be considered in cases where runoff or soil erosion could occur, because of the potential for surface water contamination.  相似文献   

15.
Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of "rainfall" reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.  相似文献   

16.
Abstract

Movement and degradation of 14C‐atrazine (2‐chloro 4‐(ethylamino)‐6‐(isopropylamino)‐s‐triazine, was studied in undisturbed soil columns (0.50m length × 0.10m diameter) of Gley Humic and Deep Red Latosol from a maize crop region of Sao Paulo state, Brazil. Atrazine residues were largely confined to the 0–20cm layers over a 12 month period Atrazine degraded to the dealkylated metabolites deisopropylatrazine and deethylatrazine, but the major metabolite was hydroxyatrazine, mainly in the Gley Humic soil. Activity detected in the leachate was equivalent to an atrazine concentration of 0.08 to 0.11μg/1.

The persistence of 14C‐atrazine in a maize‐bean crop rotation was evaluated in lysimeters, using Gley Humic and Deep Red Latosol soils. Uptake of the radiocarbon by maize plants after 14‐days growth was equivalent to a herbicide concentration of 3.9μg/g fresh tissue and was similar in both soils. High atrazine degradation to hydroxyatrazine was detected by tic of maize extracts. After maize harvest, when beans were sown the Gley Humic soil contained an atrazine concentration of 0.29 μg/g soil and the Deep Red Latosol, 0.13 μg/g soil in the 0–30 cm layer. Activity detected in bean plants corresponded to a herbicide concentration of 0.26 (Gley Humic soil) and 0.32μg/g fresh tissue (Deep Red Latossol) after 14 days growth and 0.43 (Gley Humic soil) and 0.50 μg/g fresh tissue (Deep Red Latossol) after 97 days growth. Traces of activity equivalent to 0.06 and 0.02μg/g fresh tissue were detected in bean seeds at harvest. Non‐extractable (bound) residues in the soils at 235 days accounted for 66.6 to 75% (Gley Humic soil and Deep Red Latossol) of the total residual activity.  相似文献   

17.
Abstract

Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of “rainfall”; reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.  相似文献   

18.
Nag SK  Kookana R  Smith L  Krull E  Macdonald LM  Gill G 《Chemosphere》2011,84(11):1572-1577
We evaluated wheat straw biochar produced at 450 °C for its ability to influence bioavailability and persistence of two commonly used herbicides (atrazine and trifluralin) with different modes of action (photosynthesis versus root tip mitosis inhibitors) in two contrasting soils. The biochar was added to soils at 0%, 0.5% and 1.0% (w/w) and the herbicides were applied to those soil-biochar mixes at nil, half, full, two times, and four times, the recommended dosage (H4). Annual ryegrass (Lolium rigidum) was grown in biochar amended soils for 1 month. Biochar had a positive impact on ryegrass survival rate and above-ground biomass at most of the application rates, and particularly at H4. Within any given biochar treatment, increasing herbicide application decreased the survival rate and fresh weight of above-ground biomass. Biomass production across the biochar treatment gradient significantly differed (< 0.01) and was more pronounced in the case of atrazine than trifluralin. For example, the dose-response analysis showed that in the presence of 1% biochar in soil, the value of GR50 (i.e. the dose required to reduce weed biomass by 50%) for atrazine increased by 3.5 times, whereas it increased only by a factor of 1.6 in the case of trifluralin. The combination of the chemical properties and the mode of action governed the extent of biochar-induced reduction in bioavailability of herbicides. The greater biomass of ryegrass in the soil containing the highest biochar (despite having the highest herbicide residues) demonstrates decreased bioavailability of the chemicals caused by the wheat straw biochar. This work clearly demonstrates decreased efficacy of herbicides in biochar amended soils. The role played by herbicide chemistry and mode of action will have major implications in choosing the appropriate application rates for biochar amended soils.  相似文献   

19.
Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean-fed > corn-fed > not-fed-earthworm-castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn-castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean- and corn-castings treatments was always less than desorption from soil and not-fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

20.
Sorption kinetics of atrazine and diuron was evaluated in soil samples from a typical landscape in Paraná. Samples were collected (0-20 cm) in a no-tillage area from Mamborê, PR, which has been cultivated under a crop rotation for the last six years. Six sampling points of the slope were selected to represent a wide range of soil chemical and physical properties found in this area. Radiolabeled tracers (14C-atrazine and 14C-diuron) were used and the radioactivity was detected by liquid scintillation counting (LSC). Sorption was accomplished for increasing equilibration periods (0.5, 1.5, 3, 6, 12, 24, and 48 h). Kinetics data fitted adequately well to Elovich equation, providing evidences that soil reaction occurs in two distinct stages: a fast, initial one followed by a slower one. During the fast phase, 34-42 and 71-79% of total atrazine and diuron applied were sorbed to soil samples. No important differences were found among combinations of soil and herbicide sorption during the slow phase. The unrealistic conditions under batch experiments should be overestimating sorption in the fast phase and underestimating diffusion in the slow phase. Sorption of both herbicides was positively correlated to organic carbon and clay contents of soils, but atrazine was much less sorbed than diuron, showing its higher potential to contaminate groundwater, specially in sandy, low organic carbon soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号