首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
伴随着公民社会的成长,对固体废弃物的认识逐步从处理、管理发展为治理,给出了固体废弃物治理的定义、特征、基本任务、治理准则与方法和主要障碍.  相似文献   

2.
A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste fractions. Impact potentials are estimated for 1 tonne of mixed waste disposed off in a conventional landfill with bottom liner, leachate collection and treatment and gas collection and utilization for electricity generation. All the environmental aspects are accounted for 100 years after disposal and several impact categories have been considered, including standard categories, toxicity-related categories and groundwater contamination.Amongst the standard and toxicity-related categories, the highest potential impact is estimated for human toxicity via soil (HTs; 12 mPE/tonne). This is mostly caused by leaching of heavy metals from ashes (e.g. residues from roads cleaning and vacuum cleaning bags), batteries, paper and metals. On the other hand, substantial net environmental savings are estimated for the categories Global Warming (GW; ?31 mPE/tonne) and Eco-Toxicity in water chronic (ETwc; ?53 mPE/tonne). These savings are mostly determined by the waste fractions characterized by a high content of biogenic carbon (paper, organics, other combustible waste). These savings are due to emissions from energy generation avoided by landfill gas utilization, and by the storage of biogenic carbon in the landfill due to incomplete waste degradation.  相似文献   

3.
Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.  相似文献   

4.
The performance of Spanish solid waste collection   总被引:1,自引:0,他引:1  
In this paper we examine street cleaning and waste collection services in Spanish municipalities with a population exceeding 50,000. The purpose is to identify factors that influence the efficiency of these services. Three input variables (staff, vehicles and containers) and four outputs variables (tonnage, collection points, collection point density and kilometres of surface area washing) are analyzed using an analytical model based on Data Envelopment Analysis (DEA) methodology. These variables, along with non-controllable input variable (Tourist Index), were chosen because they were shown, based on a Tobit regression analysis, to have a statistically significant impact on municipality behaviour. The results obtained show that scale inefficiency was lower than pure technical efficiency, the latter is linked to service management. It was observed that the street-cleaning activity was performed more inefficiently than that of waste collection. Furthermore, it was detected that municipalities can reduce the resources used in rendering this service by 8%. Finally, an estimation using the Mann-Whitney test allows us to conclude that there is no difference between the inefficiencies observed in municipalities managed directly by town councils and those which have been transferred to private companies.  相似文献   

5.
By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is "landfilling of 1ton of wet household waste in a 10m deep landfill for 100 years". The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater resources significantly decrease, although at the same time specific emissions from gas treatment lead to increased impact potentials in the toxicity-related categories. Gas utilization for energy recovery leads to saved emissions and avoided impact potentials in several environmental categories. Measures should be taken to prevent leachate infiltration to groundwater and it is essential to collect and treat the generated leachate. The bioreactor technologies recirculate the collected leachate to enhance the waste degradation process. This allows the gas collection period to be reduced from 40 to 15 years, although it does not lead to noticeable environmental benefits when considering a 100 years LCA-perspective. In order to more comprehensively understand the influence of the active operations (i.e., leachate recirculation, waste flushing and air injection) on the environmental performance, the time horizon of the assessment has been split into two time periods: years 0-15 and 16-100. Results show that if these operations are combined with gas utilization and leachate treatment, they are able to shorten the time frame that emissions lead to environmental impacts of concern.  相似文献   

6.
A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners to optimize current waste management systems with respect to environmental achievements and by authorities to set guidelines and regulations and to evaluate different strategies for handling of waste. The waste hierarchy has for decades been governing waste management but the ranking of handling approaches may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system.  相似文献   

7.
纳米材料在水处理中的应用   总被引:1,自引:0,他引:1  
从纳米光催化氧化技术、纳米膜过滤技术和纳米吸附材料等三方面分别介绍了纳米技术在水处理方面的研究和应用情况.  相似文献   

8.
就环境技术引进的社会背景及其相关法律问题作了简要说明,对环境技术引进的一般法律管制进行了分析,较为深入的阐述了对环境技术引进进行环境法律规制的必要性,并提出了对环境技术引进进行环境法律规制的基本原则及基本制度.  相似文献   

9.
In this study, percolation and batch leaching tests were considered in order to characterize the behaviour of air pollution control (APC) residues produced in a municipal solid waste incinerator (MSWI) as a function of the liquid to solid ratio (L/S). This waste is hazardous, and taking into account their physical and chemical properties, leaching of contaminants into the environment is the main concern. In our work the leaching behaviour of toxic heavy metals (Pb, Zn, Cr, Ni and Cu) and inorganics associated with soluble salts (Na, K, Ca and Cl) was addressed. Although pH of the leaching solution is the most important variable, L/S may also play an important role in leaching processes. In our work, results from column and batch tests were compared in terms of concentration (mg/L) and releasing (mg/kg). The APC residues revealed to be hazardous according to both tests, and both Pb and Cl far exceeded the regulatory thresholds. The material exhibits high solubility, and when the liquid to solid ratio was high, more than 50% can be solubilised. The patterns of release may be in some cases availability or solubility controlled, and the former was easier to identify. When the results from column and batch experiments were compared by representing the cumulative released amounts (in mg/kg) as a function of L/S, both curves match for Zn, Ni, Cu, K, Na, Cl and Ca, but for Cr and Pb a significant difference was observed. In fact, the column experiments revealed that under percolation conditions it should be expected slow releasing of Pb along time. From this study, it can be concluded that the released amounts obtained in batch experiments for a certain L/S should be considered as the worst case for medium term. Some simple models proposed on the literature and based on local equilibrium assumption showed good fitting to experimental data for soluble species (non-reactive solutes).  相似文献   

10.
An in situ compost biofilter was established for the treatment of odors from biostabilization processing of municipal solid waste. The concentrations of total volatile organic compounds (VOCs) in odors and their components were measured. Biofilter media was characterized in terms of total carbon (TC), total nitrogen (TN), total phosphorus (TP), organic matter (OM), pH value and determination of bacterial colony structure. Gas chromatography–mass spectrometry (GC–MS) analysis showed that the main components of the produced gas were benzene, toluene, ethylbenzene and xylene (BTEX) along with other alkanes, alkenes, terpenes, and sulphur compounds. The compost biofilter had remarkable removal ability for alkylated benzenes (>80%), but poor removal for terpenes (~30%). Total VOC concentrations in odors during the biostabilization process period ranged from 0.7 to 87 ppmv, and the VOC removal efficiency of the biofilter varied from 20% to 95%. After about 140 days operation, TN, TC, TP and OM in compost were kept almost stable, but the dissolved N, NH4–N and NO3–N experienced an increase of 44.5%, 56.2% and 76.3%, respectively. Dissolved P decreased by 27.3%. The pH value experienced an increase in the early period and finally varied from 7.38 to 8.08. Results of bacterial colony in packing material indicated that bacteria and mold colony counts increased, but yeasts and actinomyces decreased along with biofilter operation, which were respectively, 3.7, 3.4, 0.04 and 0.07 times of their initial values.  相似文献   

11.
 The limited scientific information about infectious waste, and the heightened public awareness of this special component of the waste stream, have contributed to the implementation or strengthening of the regulations in this area. This paper proposes a general working definition of infectious waste, and describes the systems used to limit its potential occupational and public health impacts. Although incineration and autoclaving are the most widely used methods of treating infectious waste, the introduction of more stringent air-quality standards for incinerators, and the inherent limitations to the application of autoclaves, have created a demand for other methods of processing this segment of the solid and liquid waste streams. These alternative technologies use one or more of the following methods: (1) heating the waste to a minimum of 90–95°C; (2) exposing the waste to suitable chemicals; (3) subjecting the waste to heated chemicals; (4) irradiating the infectious waste with ionizing sources. The advantages and disadvantages of each of these alternative forms of treatment are discussed in this paper. Received: April 22, 2002 / Accepted: October 14, 2002  相似文献   

12.
Application of municipal solid waste compost (MSWC) to agricultural soils is becoming an increasingly important global practice to enhance and sustain soil organic matter (SOM) and fertility levels. Potential risks associated with heavy metals and phosphorus accumulations in surface soils may be minimized with integrated nutrient management strategies that utilize MSWC together with mineral fertilizers. To explore the economic feasibility of MSWC applications, nutrient management plans were developed for rice–wheat and cotton–wheat cropping systems within the Punjab region of Pakistan. Three-year field trials were conducted to measure yields and to determine the economic benefits using three management strategies and two nutrient doses. Management strategies included the application of mineral fertilizers as the sole nutrient source and application of mineral fertilizers in combination with MSWC with and without pesticide/herbicide treatments. Fertilizer doses were either based on standard N, P and K recommendations or on measured site-specific soil plant available phosphorus (PAP) levels. It was found that combining MSWC and mineral fertilizer applications based on site-specific PAP levels with the use of pesticides and herbicides is an economically and environmentally viable management strategy. Results show that incorporation of MSWC improved soil physical properties such as bulk density and penetration resistance. The PAP levels in the surface layer increased by the end of the trials relative to the initial status. No potential risks of heavy metal (Zn, Cd, Cr, Pb and Ni) accumulation were observed. Treatments comprised of MSWC and mineral fertilizer adjusted to site-specific PAP levels and with common pest management showed highest cumulative yields. A basic economic analysis revealed a significantly higher cumulative net profit and value-to-cost ratio (VCR) for all site-specific doses.  相似文献   

13.
Direct waste analysis (DWA) and the material flows approach are the two standard methods to quantify aggregated waste streams and analyze waste composition. Yet, with the increasing application of producer responsibility measures, product-based waste data rather than aggregated waste data are becoming important. It is over this requirement that both approaches fail to some extent in delivering the type and quality of information that is needed. This study uses plastic bag waste as an illustration to show how self-reported questionnaire survey data may be used to assess disposal quantities of product-based waste types. The estimates from a large-scale questionnaire survey with over 4,100 completed cases were verified against DWA data of the same year in Hong Kong. It was found that self-reported data give systematically lower figures (on the order of 1.3-5 times) than those obtained from standard methods such as DWA for Hong Kong and the UK. However, it is demonstrated that self-reported data can be internally consistent. Also, the magnitude of underestimation may not be as considerable as it appears since the data from DWA are not themselves entirely accurate owing to the difficulties in obtaining a pure load of waste for field analysis and the variable moisture contents or contamination levels in waste material.  相似文献   

14.
Municipal solid waste (MSW) generation and management in Cuba was studied with a view to integrating composting of the organic fractions of MSW into the system. Composting is already included as part of the environmental strategy of the country as an appropriate waste management solution. However, no programme for area-wide implementation yet exists. The evaluation of studies carried out by some Cuban and international organisations showed that organic matter comprises approximately 60-70% of the MSW, with households being the main source. If all organic waste fractions were considered, the theoretical amount of organic waste produced would be approximately 1 Mio. Mg/a, leading to the production of approximately 0.5 Mio. Mg/a of compost. Composting could, therefore, be a suitable solution for treating the organic waste fractions of the MSW. Composting would best be carried out in decentralised systems, since transportation is a problem in Cuba. Furthermore, low technology and low budget composting options should be considered due to the problematic local economic situation. The location for such decentralised composting units would optimally be located at urban agricultural farms, which can be found all over Cuba. These farms are a unique model for sustainable farming in the world, and have a high demand for organic fertiliser. In this paper, options for the collection and impurity-separation in urban areas are discussed, and a stepwise introduction of source-separation, starting with hotel and restaurant waste, is suggested. For rural areas, the implementation of home composting is recommended.  相似文献   

15.
Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co-combustion in existing power plants and utilization of the liquid fraction for biogas production were concluded to be the most favourable options with respect to their environmental impacts (particularly global warming) and energy performance. The optimization of the energy and environmental performance of the waste refinery was mainly associated with the opportunity to decrease energy and enzyme consumption.  相似文献   

16.
In China, controlling environmental pollution resulting from solid waste (SW) and hazardous waste (HW) has become one of the most pressing tasks in the field of environmental engineering. It is reported that the annual generation of industrial solid waste (ISW) in China exceeded 0.6 billion tons in the 1990s, and is increasing every year. Although ISW management has been strengthened in recent years, about 40% of SW is put in uncontrolled landfill without appropriate treatment. According to statistics from the national Environmental Protection Agency, the cumulative ISW uncontrolled landfill in China had reached 6.6 billion tons by the end of 1995, occupying around 55 000 hectares of land. Although some major uncontrolled landfills were constructed, nonetheless groundwater contamination resulted from the use of low-standard liners and poor management. Furthermore, about 20 million tons of ISW was discharged into the environment illegally, and a third of this waste was discharged directly into water bodies, making ISW one of the greatest pollution sources for surface water and ground water. Environmental pollution accidents resulting from SW occur about 100 times a year in China, and environmental issues frequently arise because of ISW pollution. The practices of SW management, treatment, and disposal started relatively late in China, and for a long time the management of SW pollution has received little attention compared with water and air pollution management. China faces problems such as the insufficiency of management laws and regulations, insufficient investment, inadequate treatment and disposal technology, and a lack of qualified technicians. At present, most treatment and disposal technology cannot meet the requests for solid waste pollution control. In order to protect, restore, and improve environmental quality in China and to realize sustainable development, the safe management and disposal of solid and hazardous wastes is a pressing challenge. In recent years, much attention has been paid to SW management in China, and investment to develop management and treatment technologies has increased. In 1995, the Law for Solid Waste Pollution Protection was issued, and work on solid waste treatment and disposal began to be legally managed. SW treatment and disposal facilities have been constructed, and now operate in some large and medium-sized cities. In particular, rapid improvements have been seen in ISW recycling, collection, and disposal of municipal solid waste and regional HW management. All the figures in this paper are from 1995, and represent the situation in China in that year. Received: April 18, 2000 / Accepted: May 15, 2000  相似文献   

17.
Cost estimation is a basic requirement for planning municipal solid waste management systems. The variety of organizational, financial and management schemes and the continuously developing technological advancements render the economic analysis a complex task, made more complex by the scarcity of real cost data. The objectives of this paper were: (1) to explore the problems arising in getting cost estimates from scattered and limited published data; (2) to suggest a procedure for generating cost functions relating initial set-up cost and operating cost with facility size; and (3) to present such cost functions, relevant to European states, for selected types of solid waste treatment and disposal facilities. Regarding the problems of available scarce data, one needs to deal with cost figures which correspond to facilities with variations in size, technology, year of construction, working conditions, level of technological automation, environmental impacts, social acceptance, capacity utilization rate, composition of inflowing waste, waste management policies, degree of compliance with quality standards, etc. The paper addresses this issue and discusses the proper use of statistical analyses in such cases of fragmented data; moreover, it points out some usual misuses of statistics by analysts and the danger of getting erroneous results. The suggested process for generating cost functions acceptable to the decision-makers is pivoted around the question of acceptable approximation level. Finally, approximate cost curves are suggested for waste-to-energy facilities, landfilling facilities, anaerobic digestion facilities and composting facilities.  相似文献   

18.
Hydrothermal treatments using subcritical water (HTSW) such as that at 234 °C and 3 MPa (LT condition) and 295 °C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources.While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char.Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing.From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.  相似文献   

19.
The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).  相似文献   

20.
Management of municipal solid waste is a major problem for most of the Indian cities due to the growing urban population and per capita waste generation rate, inadequate public participation and the deplorable organizational and financial capacities of urban local bodies. This article highlights the interventions required for sustainable solid waste management in Indian cities by analyzing the waste generation, collection, and disposal scenario of a metro city in India along with the regulatory and institutional frame work. It advocates a phased and integrated approach taking into account the operational hurdles and the capacity building of local bodies with the support of educational organizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号