首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
Taking the European Union (EU) as a case study, we simulate the application of non-uniform national mitigation targets to achieve a sectoral reduction in agricultural non-carbon dioxide (CO2) greenhouse gas (GHG) emissions. Scenario results show substantial impacts on EU agricultural production, in particular, the livestock sector. Significant increases in imports and decreases in exports result in rather moderate domestic consumption impacts but induce production increases in non-EU countries that are associated with considerable emission leakage effects. The results underline four major challenges for the general integration of agriculture into national and global climate change mitigation policy frameworks and strategies, as they strengthen requests for (1) a targeted but flexible implementation of mitigation obligations at national and global level and (2) the need for a wider consideration of technological mitigation options. The results also indicate that a globally effective reduction in agricultural emissions requires (3) multilateral commitments for agriculture to limit emission leakage and may have to (4) consider options that tackle the reduction in GHG emissions from the consumption side.  相似文献   

2.
Livestock production systems will inevitably be affected as a result of changes in climate and climate variability, with impacts on peoples’ livelihoods. At the same time, livestock food chains are major contributors to greenhouse gas emissions. Agriculture and livestock in particular will need to play a greater role than they have hitherto in reducing emissions in the future. Adaptation and mitigation may require significant changes in production technology and farming systems, which could affect productivity. Given what is currently known about the likely impacts on livestock systems, however, the costs of mitigating and adapting to climate change in the aggregate may not represent an enormous constraint to the growth of the global livestock sector, in its bid to meet increasing demand for livestock products. Different livestock systems have different capacities to adapt or to take on board the policy and regulatory changes that may be required in the future. Vulnerability of households dependent on livestock, particularly in the drier areas of developing countries, is likely to increase substantially, with concomitant impacts on poverty and inequity. The capacity of these systems to adapt and to yield up their carbon sequestration potential deserves considerable further study. Comprehensive frameworks need to be developed to assess impacts and trade-offs, in order to identify and target adaptation and mitigation options that are appropriate for specific contexts, and that can contribute to environmental sustainability as well as to poverty alleviation and economic development.  相似文献   

3.
An environmentally extended input-output (EE-IO) analysis - environmental impacts of material flows caused by the Finnish economy - was carried out in order to improve data on production and consumption in Finland. The study resulted in the ENVIMAT model, which can be used to analyze the relationship between material flows, environmental impacts and the economy. The model is based on monetary and physical input-output tables and an environmental life-cycle impact assessment. This article summarizes the main methodological aspects and findings regarding the material flows and climate impacts caused by the Finnish economy in 2002 and 2005. The Finnish model has relatively detailed input data with 150 industries and 918 products and the data on imports was assessed according to a mixed approach with the help of life-cycle inventory data. The results of the model showed that the Finnish economy uses imported material resources as much as domestic resources. Life-cycle greenhouse gas (GHG) emissions caused by imports were equivalent to 70-80% of domestic emissions. The GHG emissions embodied in imports (emissions abroad) and exports (emissions within Finland) were of the same magnitude. The analysis showed that the service sector accounted for 44% of GHG emissions caused by the domestic final use of products. Analysis of the results also showed that the indicator of total material requirement (TMR) should not be used for environmental impact comparisons of products and services. In the future, the aim is to use the ENVIMAT model for assessing temporal changes in the economy; for monitoring sustainable development; for planning climate change mitigation; and for identifying important factors in the economy and assessing their impacts.  相似文献   

4.
A recent assessment of agricultural greenhouse gas (GHG) emissions has demonstrated significant potential for mitigation, but suggests that the full mitigation will not be realized due to significant barriers to implementation. In this paper, we explore the constraints and barriers to implementation important for GHG mitigation in agriculture. We also examine how climate and non-climate policy in different regions of the world has affected agricultural GHG emissions in the recent past, and how it may affect emissions and mitigation implementation in the future. We examine the links between mitigation and adaptation and drives for sustainable development and the potential for agricultural GHG mitigation in the future.We describe how some countries have initiated climate and non-climate policies believed to have direct effects or synergistic effects on mitigating GHG emissions from agriculture. Global sharing of innovative technologies for efficient use of land resources and agricultural chemicals, to eliminate poverty and malnutrition, will significantly mitigate GHG emissions from agriculture.Previous studies have shown that as less than 30% of the total biophysical potential for agricultural GHG mitigation might be achieved by 2030, due to price- and non-price-related barriers to implementation. The challenge for successful agricultural GHG mitigation will be to remove these barriers by implementing creative policies. Identifying policies that provide benefits for climate, as well as for aspects of economic, social and environmental sustainability, will be critical for ensuring that effective GHG mitigation options are widely implemented in the future.  相似文献   

5.
Dairy farming is the largest agricultural source of the greenhouse gases methane (CH4) and nitrous oxide (N2O) in Europe. A whole-farm modeling approach was used to investigate promising mitigation measures. The effects of potential mitigation measures were modeled to obtain estimates of net greenhouse gas (GHG) emissions from representative dairy model farms in five European regions. The potential to reduce farm GHG emissions was calculated per kg milk to compare organic and conventional production systems and to investigate region and system specific differences. An optimized lifetime efficiency of dairy cows reduced GHG emissions by up to 13% compared to baseline model farms. The evaluation of frequent removal of manure from animal housing into outside covered storage reduced farm GHG emissions by up to 7.1%. Scraping of fouled surfaces per se was not an effective option since the reduction in GHG emissions from animal housing was more than out-weighed by increased emissions from the storage and after field application. Manure application by trail hose and injection, respectively, was found to reduce farm GHG emissions on average by 0.7 and 3.2% compared to broadcasting. The calculated model scenarios for anaerobic digestion demonstrated that biogas production could be a very efficient and cost-effective option to reduce GHG emissions. The efficiency of this mitigation measure depends on the amount and quality of organic matter used for co-digestion, and how much of the thermal energy produced is exploited. A reduction of GHG emissions by up to 96% was observed when all thermal energy produced was used to substitute fossil fuels. Potential measures and strategies were scaled up to the level of European regions to estimate their overall mitigation potential. The mitigation potential of different strategies based on a combination of measures ranged from −25 up to −105% compared to baseline model farms. A full implementation of the most effective strategy could result in a total GHG emission reduction of about 50 Mt of carbon dioxide (CO2) equivalents per year for conventional dairy farms of EU(15) comparable to the defined model farms.  相似文献   

6.
This paper develops multiple-pollutant marginal abatement cost curve analysis to identify an optimal set of greenhouse gas (GHG) mitigation measures considering the trade-offs and synergies with other environmental pollutants. The analysis is applied to UK agriculture, a sector expected to make a contribution to the national GHG mitigation effort. Previous analyses using marginal abatement cost curves (MACCs) have determined the sector's GHG abatement potential based on the cost-effectiveness of a variety of technically feasible mitigation measures. Most of these measures have external effects on other pollution loads arising from agricultural activities. Here the monetary values of four of the most important impacts to water and air (specifically ammonia, nitrate, phosphorous and sediment) are included in the cost-effectiveness analysis. The resulting multiple-pollutant marginal abatement cost curve (MP MACC) informs the design of sustainable climate change policies by showing how the MP MACC for the UK agriculture can differ from the GHG MACC. The analysis also highlights research gaps, and suggests a need to understand the wider environmental effects of GHG mitigation options and to reduce the uncertainty in pollutant damage cost estimates.  相似文献   

7.
Agricultural lands have been identified to mitigate greenhouse gas (GHG) emissions primarily by production of energy crops and substituting fossil energy resources and through carbon sequestration in soils. Increased fertilizer input resulting in increased yields may reduce the area needed for crop production. The surplus area could be used for energy production without affecting the land use necessary for food and feed production. We built a model to investigate the effect of changing nitrogen (N) fertilizer rates on cropping area required for a given amount of crops. We found that an increase in nitrogen fertilizer supply is only justified if GHG mitigation with additional land is higher than 9–15 t carbon dioxide equivalents per hectare (CO2-eq../ha). The mitigation potential of bioenergy production from energy crops is most often not in this range. Hence, from a GHG abatement point of view land should rather be used to produce crops at moderate fertilizer rate than to produce energy crops. This may change if farmers are forced to reduce their N input due to taxes or governmental regulations as it is the case in Denmark. However, with a fertilizer rate 10 % below the economical optimum a reduction of N input is still more effective than the production of bioenergy unless mitigation effect of the bioenergy production exceeds 7 t carbon dioxide (CO2)-eq../ha. An intensification of land use in terms of N supply to provide more land for bioenergy production can only in exceptional cases be justified to mitigate GHG emissions with bioenergy under current frame conditions in Germany and Denmark.  相似文献   

8.
This study assesses the direct and indirect environmental impacts to be expected if Switzerland should replace one percent of its current diesel consumption with imports of A) soybean methyl ester (SME) from Brazil, or B) palm methyl ester (PME) from Malaysia. In order to take into account possible future consequences, what-if scenarios were developed and assessed by means of a consequential LCA. In contrast to attributional LCA, the consequential approach uses system enlargement to include the marginal products affected by a change of the physical flows in the central life cycle. This means that the LCA considers all inputs and outputs which are linked to biodiesel production and that the product system is subsequently expanded to include the marginal products affected. Both future systems are assessed in comparison with the environmental scores of the fossil equivalent to biodiesel, i.e. diesel low in sulphur. The environmental burdens are measured by means of greenhouse gas emissions (GHG), land occupation and various non-aggregated and aggregated environmental impact indicators.In sum, the environmental impacts of an increased SME consumption depend on the environmental scores of the marginal replacement products on the world market, rather than on local production factors. In other words, the marginal products assumed to be affected are most important for the results obtained, i.e. in particular the marginal vegetable oil, fodder cake and land areas. In this study it is SME production increased at the expense of the available soybean oil which shifts the impacts associated with soybean oil production to the production of the marginal vegetable oils on the world market. In this perspective, it is not relevant in which country biodiesel production takes place, but rather which vegetable oil is involved. With respect to PME, the most relevant determining factor for the environmental impacts is the land area affected by the increased cultivation of oil palms. Currently, this expansion displaces primarily peat land and rain forest. This causes GHG emissions which are much higher than the emissions of the fossil reference. All in all, both PME from Malaysia and SME from Brazil cause more environmental impact than allowed by the Swiss tax redemption on agro-biofuels (max. 60% GHG emissions and 125% UBP of the fossil reference).  相似文献   

9.
Full accounting of the greenhouse gas budget in the forestry of China   总被引:1,自引:0,他引:1  
Forest management to increase carbon (C) sinks and reduce C emissions and forest resource utilization to store C and substitute for fossil fuel have been identified as attractive mitigation strategies. However, the greenhouse gas (GHG) budget of carbon pools and sinks in China are not fully understood, and the forestry net C sink must be determined. The objective of this study was to analyze potential forest management mitigation strategies by evaluating the GHG emissions from forest management and resource utilization and clarify the forestry net C sink, and its driving factors in China via constructing C accounting and net mitigation of forestry methodology. The results indicated that the GHG emissions under forest management and resource utilization were 17.7 Tg Ce/year and offset 8.5% of biomass and products C sink and GHG mitigation from substitution effects from 2000 to 2014, resulting in a net C sink of 189.8 Tg Ce/year. Forest resource utilization contributed the most to the national forestry GHG emissions, whereas the main driving factor underlying regional GHG emissions varied. Afforestation dominated the GHG emissions in the southwest and northwest, whereas resource utilization contributed the most to GHG emissions in the north, northeast, east, and south. Furthermore, decreased wood production, improved product use efficiency, and forests developed for bioenergy represented important mitigation strategies and should be targeted implementation in different regions. Our study provided a forestry C accounting in China and indicated that simulations of these activities could provide novel insights for mitigation strategies and have implications for forest management in other countries.  相似文献   

10.
Accounting the changes in the net carbon (C) sink-source balance is an important component for greenhouse gas emissions (GHG) inventories. However, carbon emission due to the vegetation biomass extraction for household purposes is generally not accounted in forest carbon budget analysis due to miniscule volume and non-availability of data. However, if vegetation remains in the forests, then vegetation biomass decomposes after natural death and decay and fixes some carbon to soil and releases some directly to the atmosphere. The study attempts to quantify the carbon removal against the biomass extraction for livestock feed by collecting primary data on feed from 316 randomly selected households engaged in livestock rearing in the lower Himalayas, Uttarakhand, India and carbon flow components due to livestock production. The analysis results that average daily forest fodder consumption was 13 kg per Adult Cattle Unit (ACU) and total of 20.31 Million tonnes (Mt) consumption of forest biomass by total livestock of Uttarakhand. This results into absolute annual carbon removal of 3.25 Mt from Uttarakhand forests against the livestock fodder. However, overall carbon flow including the enteric fermentation and manure management system of livestock estimated as per IPCC guidelines, results into emissions of 9.42 Mt CO2 eq. Therefore, biomass extraction for household purposes should be accounted in regional carbon flow analysis and properly addressed in the GHG inventories of the forests and livestock sector. Suitable measures should be taken for emissions reduction generated due to forest based livestock production.  相似文献   

11.
Agriculture, Forestry and Other Land Use (AFOLU) sectors account for 53 % of the domestic greenhouse gas emissions (GHG) in Vietnam in 2000. However, due to political focus on adaptation, Vietnamese government has not formulated particular policy on mitigation in the sectors. This study aims to identify and assess mitigation potential in AFOLU sectors in Vietnam up to 2030 using AFOLU Bottom-up model. Therefore, the results can help government towards building mitigation strategies in the country. The methodology involves: (1) development of future assumptions of crops harvested areas, livestock population and area of land use and land use change and (2) identification of mitigation countermeasures with high potential and assessment of their cost-effectiveness. In 2030, 11 MtCO2eq/year of emission can be reduced by no-regret countermeasures which take zero or negative cost. In the case of full application of countermeasures, 48 MtCO2eq/year can be reduced compared to the baseline emission level. Mitigation countermeasures, which have great contribution for GHG reduction in Vietnam, are midseason drainage in rice paddy (7 MtCO2eq/year), off-season incorporation of rice straw (3 MtCO2eq/year) and conservation of existing protection forests (17 MtCO2eq/year). Based on our findings, a package of mitigation countermeasures at 10 USD/tCO2eq is expected to have the most economic efficiency and high mitigation for GHG mitigation in AFOLU sectors in Vietnam.  相似文献   

12.
中国畜牧业全生命周期温室气体排放时空特征分析   总被引:8,自引:0,他引:8  
运用生命周期评价方法,选取家畜胃肠道发酵、粪便管理系统、畜禽饲养环节耗能、饲料粮种植、饲料粮运输加工和畜禽产品屠宰加工6大环节,采用面板数据测算和分析1990~2011年中国及2011年国内各地区畜牧业温室气体排放特征.研究表明,22年间,中国畜牧业全生命周期及各个环节的CO2当量排放量均呈现上升趋势,尤其是畜禽饲养耗能、饲料粮种植、饲料粮运输加工和畜禽屠宰加工环节的增长更为显著,但历年饲料粮运输加工和畜禽屠宰加工环节占畜牧业全生命周期CO2当量排放总量的比重均低于1%和0.05%;家畜胃肠道发酵和粪便管理系统环节占畜牧业全生命周期CO2当量排放总量的比重呈下降趋势;22年间,反刍家畜的CO2当量排放量占55.25%,非反刍畜禽占44.75%.2011年,国内省域间内蒙古、辽宁和云南的畜牧业全生命周期CO2排放当量和排放强度均位居全国前10位;西部地区畜牧业全生命周期CO2当量排放量所占比重最大,并且西部地区的排放强度最高;农区畜牧业全生命周期CO2当量排放量占63.88%,牧区占14.07%,但牧区的排放强度最高,农区最低.  相似文献   

13.
湖北省畜禽粪便温室气体减排潜力分析   总被引:1,自引:0,他引:1  
畜禽粪便是农业温室气体的重要排放源.合理的粪便管理方式可有效降低温室气体排放,同时减少环境污染.为明确不同养殖模式下适宜的粪便管理方式对温室气体减排的有效性,以湖北省为案例地,针对不同畜禽的粪便特征、区域自然条件和畜禽养殖模式等,筛选适宜的粪便管理方式;运用政府间气候变化专门委员会提出的畜禽粪便温室气体排放因子测算模型,在优化管理方式的基础上进行排放因子预测,估算由粪便管理方式改进所带来的减排潜力.结果表明,粪便管理经优化后畜禽粪便温室气体排放减少1.98~357.82 kg·头-1·a-1(以CO2当量计).根据养殖规模发展趋势预测,至2020年全省畜禽粪便优化管理所带来的减排潜力可达322.78万t(以CO2当量计).不同地区间减排效果则与当地养殖规模、养殖结构、养殖模式及适宜的畜禽粪便管理方式密切相关;畜禽种类间粪便特性的不同是其CH4和N2O减排效率迥异的主要原因;规模化养殖粪便管理方式优化是实现区域温室气体减排的重点.结合区域自然条件和畜禽养殖特征等,筛选适宜的粪便管理方式是实现区域温室气体减排的有效措施.  相似文献   

14.
This paper estimates the future greenhousegas (GHG) and local pollutant emissions forIndia under various scenarios. Thereference scenario assumes continuation ofthe current official policies of the Indiangovernment and forecasts of macro-economic,demographic and energy sector indicators.Other scenarios analyzed are the economicgrowth scenarios (high and low), carbonmitigation scenario, sulfur mitigationscenario and frozen (development) scenario.The main insight is that GHG and localpollutant emissions from India, althoughconnected, do not move in synchronizationin future and have a disjoint under variousscenarios. GHG emissions continue to risewhile local pollutant emissions decreaseafter some years. GHG emission mitigationtherefore would have to be pursued for itsown sake in India. National energy securityconcerns also favor this conclusion sincecoal is the abundant national resource whilemost of the natural gas has to be imported.The analysis of contributing factors tothis disjoint indicates that sulfurreduction in petroleum oil products andpenetration of flue gas desulfurisationtechnologies are the two main contributorsfor sulfur dioxide (SO2) mitigation.The reduction in particulate emissions ismainly due to enforcing electro-staticprecipitator efficiency norms in industrialunits, with cleaner fuels and vehicles alsocontributing substantially. These policytrends are already visible in India.Another insight is that high economicgrowth is better than lower growth tomitigate local pollution as lack ofinvestible resources limits investments incleaner environmental measures. Ouranalysis also validates the environmentalKuznets' curve for India as SO2emissions peak around per capita GDP ofUS$ 5,300–5,400 (PPP basis) under variouseconomic growth scenarios.  相似文献   

15.
通过文献调研收集广东电力生产最新的能源消费数据和排放因子,采用“自上而下”方法估算1995—2011年广东电力行业的直接和间接GHG(温室气体)排放量,量化直接排放量的不确定性,绘制GHG排放流向图,并且根据GHG排放特征提出减排建议. 结果表明:①虽然受经济、环境和能源政策的影响,与1995年相比,2011年广东电力生产的GHG总排放量仍增长438%,达3.44×108 t,其中直接排放量达2.78×108 t,不确定性为±11%. ②从发电能源结构角度考虑,燃煤发电是电力生产的最大GHG排放源,2011年其排放量占总排放量的76%;而从用电终端考虑,工业用电是最大的GHG排放源,2011年其排放量占电力生产GHG总排放量的66%. ③1995—2011年,用电终端总体电力GHG排放强度下降了16%,居民用电人均GHG排放量上升了260%,单位综合发电量的GHG排放系数微升了1%. ④发电能源结构和终端产业结构的低碳化以及控制居民用电的GHG排放量等措施可减排2011年广东电力生产GHG总排放量的44%.   相似文献   

16.
Agriculture is one of the major sources of greenhouse gas (GHG) emission. It accounts for approximately 15% of the total global anthropogenic emissions of GHGs. Emissions could be twice as much if indirect emissions are also taken into the consideration. However, unlike other high emitting sectors such as transport or energy, agriculture is potentially a significant carbon “sink”. It has high technical potential as a carbon sink and if tapped, can substantially enhance global sequestration efforts. The technical potential, however, may not translate into actual GHG reduction because of the capital assets and institutional constraints faced by the smallholder farmers in the developing countries. In this paper we develop a capital assets based framework of physical, financial, social, human and natural barriers to agricultural carbon mitigation initiatives and through analysis of current initiatives, we set out policy based options to reduce each of these barriers. Fundamentally, barrier removal will entail designing agricultural carbon mitigation initiatives in collaboration with farmer communities, through strengthening local institutions, understanding land tenure and natural resource cultures, ensuring legitimacy and equity in payments and fast tracking training and information. We provide a framework that simultaneously aids the dual objectives of alleviating poverty in the poor farming communities of developing countries and lowering global greenhouse gas emissions.  相似文献   

17.
On integration of policies for climate and global change   总被引:2,自引:0,他引:2  
Currently envisaged mitigation of greenhouse gases (GHG) emissions will be insufficient to appreciably limit climate change and its impacts. Adaptation holds the promise of ameliorating the impacts on a small subset of systems being affected. There is no question that both will be needed. However, climate change is only part of a broader multi-stress setting of global through to local changes. Privileging climate related policies over other concerns leads to tragic outcomes. Climate policies need to be designed for and integrated into this broader and challenging context. This paper focuses on placing climate change within the broader context of global change and the importance of aligning climate policy objectives with the myriad other policies that still need to be implemented if our primary goal is improving human welfare rather than limiting our focus to climate change and its impacts.  相似文献   

18.
Fertilizer nitrogen (N) use is expanding globally to satisfy food, fiber, and fuel demands of a growing world population. Fertilizer consumers are being asked to improve N use efficiency through better management in their fields, to protect water resources and to minimize greenhouse gas (GHG) emissions, while sustaining soil resources and providing a healthy economy. A review of the available science on the effects of N source, rate, timing, and placement, in combination with other cropping and tillage practices, on GHG emissions was conducted. Implementation of intensive crop management practices, using principles of ecological intensification to enhance efficient and effective nutrient uptake while achieving high yields, was identified as a principal way to achieve reductions in GHG emissions while meeting production demands. Many studies identified through the review involved measurements of GHG emissions over several weeks to a few months, which greatly limit the ability to accurately determine system-level management effects on net global warming potential. The current science indicates: (1) appropriate fertilizer N use helps increase biomass production necessary to help restore and maintain soil organic carbon (SOC) levels; (2) best management practices (BMPs) for fertilizer N play a large role in minimizing residual soil nitrate, which helps lower the risk of increased nitrous oxide (N2O) emissions; (3) tillage practices that reduce soil disturbance and maintain crop residue on the soil surface can increase SOC levels, but usually only if crop productivity is maintained or increased; (4) differences among fertilizer N sources in N2O emissions depend on site- and weather-specific conditions; and (5) intensive crop management systems do not necessarily increase GHG emissions per unit of crop or food production; they can help spare natural areas from conversion to cropland and allow conversion of selected lands to forests for GHG mitigation, while supplying the world's need for food, fiber, and biofuel. Transfer of the information to fertilizer dealers, crop advisers, farmers, and agricultural and environmental authorities should lead to increased implementation of fertilizer BMPs, and help to reduce confusion over the role of fertilizer N on cropping system emissions of GHGs. Gaps in scientific understanding were identified and will require the collaborative attention of agronomists, soil scientists, ecologists, and environmental authorities in serving the immediate and long-term interests of the human population.  相似文献   

19.
As climate changes due to rising concentrations of greenhouse gases in the atmosphere, agriculture will be one of the key human activities affected. Projections show that while overall global food production in the coming decades may keep pace with the food requirements of a growing world population, climate change might worsen existing regional disparities because it will reduce crop yields mostly in lands located at lower latitudes where many developing countries are situated. Strategies to enhance local adaptation capacity are therefore needed to minimize climatic impacts and to maintain regional stability of food production. At the same time, agriculture as a sector offers several opportunities to mitigate the portion of global greenhouse gas emissions that are directly dependent upon land use, land-use change, and land-management techniques. This paper reviews issues of agriculture and climate change, with special attention to adaptation and mitigation. Specifically, as adaptation and mitigation strategies in agriculture are implemented to alleviate the potential negative effects of climate change, key synergies need to be identified, as mitigation practices may compete with modifications to local agricultural practices aimed at maintaining production and income. Under future climate and socio-economic pressures, land managers and farmers will be faced with challenges in regard to selecting those mitigation and adaptation strategies that together meet food, fiber and climate policy requirements.  相似文献   

20.
The global land area required to meet the German consumption of agricultural products for food and non-food use was quantified, and the related greenhouse gas (GHG) emissions, particularly those induced by land-use changes in tropical countries, were estimated. Two comprehensive business-as-usual scenarios describe the development corridor of biomass for non-food use in terms of energetic and non-energetic purposes. In terms of land use, Germany was already a net importer of agricultural land in 2004, and the net additional land required by 2030 is estimated to comprise 2.5–3.4 Mha. This is mainly due to biofuel demand driven by current policy targets. Meeting the required biodiesel import demand would result in an additional GWP of 23–37 Tg of CO2 equivalents through direct and indirect land-use changes. Alternative scenario elements outline the potential options for reducing Germany's land requirement, which reflect future global per capita availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号