首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: We evaluate the effects of small dams (11 of 15 sites less than 4 m high) on downstream channels at 15 sites in Maryland and Pennsylvania by using a reach upstream of the reservoir at each site to represent the downstream reach before dam construction. A semi‐quantitative geomorphic characterization demonstrates that upstream reaches occupy similar geomorphic settings as downstream reaches. Survey data indicate that dams have had no measurable influence on the water surface slope, width, and the percentages of exposed bedrock or boulders on the streambed. The median grain diameter (D50) is increased slightly by dam construction, but D50 remains within the pebble size class. The percentage of sand and silt and clay on the bed averages about 35% before dam construction, but typically decreases to around 20% after dam construction. The presence of the dam has therefore only influenced the fraction of finer‐grained sediment on the bed, and has not caused other measurable changes in fluvial morphology. The absence of measurable geomorphic change from dam impacts is explicable given the extent of geologic control at these study sites. We speculate that potential changes that could have been induced by dam construction have been resisted by inerodible bedrock, relatively immobile boulders, well‐vegetated and cohesive banks, and low rates of bed material supply and transport. If the dams of our study are removed, we argue that long‐term changes (those that remain after a period of transient adjustment) will be limited to increases in the percentage of sand and silt and clay on the bed. Thus, dam removal in streams similar to those of our study area should not result in significant long‐term geomorphic changes.  相似文献   

2.
Although the benefits of dam construction are numerous, particularly in the context of climate change and growing global demand for electricity, recent experience has shown that many dams have serious negative environmental, human, and political consequences. Despite an extensive literature documenting the benefits and costs of dams from a single disciplinary perspective, few studies have simultaneously evaluated the distribution of biophysical, socio-economic, and geopolitical implications of dams. To meet the simultaneous demands for water, energy, and environmental protection well into the future, a broader view of dams is needed. We thus propose a new tool for evaluating the relative costs and benefits of dam construction based on multi-objective planning techniques. The Integrative Dam Assessment Modeling (IDAM) tool is designed to integrate biophysical, socio-economic, and geopolitical perspectives into a single cost/benefit analysis of dam construction. Each of 27 different impacts of dam construction is evaluated both objectively (e.g., flood protection, as measured by RYI years) and subjectively (i.e., the valuation of said flood protection) by a team of decision-makers. By providing a visual representation of the various costs and benefits associated with two or more dams, the IDAM tool allows decision-makers to evaluate alternatives and to articulate priorities associated with a dam project, making the decision process about dams more informed and more transparent. For all of these reasons, we believe that the IDAM tool represents an important evolutionary step in dam evaluation.  相似文献   

3.
ABSTRACT: Over 76,000 dams have been constructed on American rivers to provide services such as flood protection, water storage, hydroelectric power, and navigation. Although most dams continue to provide sufficient benefits to retain the structure, dam removal is becoming increasingly common. This study involved the construction of a dam removal database to analyze spatial and temporal trends in dam removal. The data included information on 417 cases of dismantled American dams, 153 with known rationales for removal. Database analysis indicated that the leading purposes for dismantling structures are safety concerns and interest in environmental restoration. There is substantial geographic variability in dam removal rationales, with California leading in razing dams for environmental purposes, and Wisconsin leading in economic and safety rationales. States with substantial removals tend to have programs that support and fund dam razing. Although removals for safety reasons have been increasing steadily in the past three decades, environmental removals made a rather dramatic and sudden entry into the dam removal arena in the 1990s. Analysis of spatial and temporal trends in dam razing are of particular significance given the likely increase in dam removals in the 21st Century.  相似文献   

4.
5.
Although dams have beneficial effects, they are also acknowledged as having serious environmental repercussions if they are not properly managed. The objective of this work was to examine the impact of the Barekese Dam in Ghana on the health status of three riparian communities downstream against a control. The environmental health status of the communities was analysed with reference to traditional endemic communicable water-related diseases in the catchment area, which were identified as malaria, urinary schistosomiasis, infectious hepatitis, diarrhoeal diseases and scabies. Case-control study was then conducted in the three phases of the dam (pre-construction, at the end of the construction and in the late operational phases) to analyse the health status of the communities as a function of the phases of the dam. The results showed that the control community consistently had a much better health status than two of the riparian communities, which were closer to the dam in all the three phases. However, it had a better health status than the third riparian community, which was farthest downstream, only in the first two phases. This community maintained a fairly constant health status retrospectively and did not appear to have been affected by the presence of the dam. On contrary, the health status of the two communities in close proximity to the dam deteriorated in the late operational phase. The study therefore showed that there was a strong association between the presence of the dam and poorer health status of the downstream communities in close proximity to it.  相似文献   

6.
ABSTRACT: Completion of a 1270 acre recreational impoundment (Legend Lake) in the glacial sands of Menominee County, Wisconsin, produced geochemical and hydrologic alterations in some nearby natural lakes. The impoundment was produced by the construction of three dams, one of which proved to be temporary, connecting 9 natural lakes and ponds of 383 acres with 951 acres of flooded lands. Water levels were raised 3–15 feet within the impounded area. Much of the flooded area was peat rich wetland associated with the prior drainage. Water depths are less than 15 feet in 70% of the impoundment. Three seepage lakes, located less than 1/2 mile from the impoundment, experienced shoreline flooding, shoreline and soil erosion, some tree kills, and increased turbidity. These lakes also experienced concentration increases in several chemical constituents which indicate an influx of impoundment water through a regional alternation in the groundwater flow paths. The three lakes were connected by canals, and a 2.3 cfs gravity drain with an auxiliary pumping station was built to return excess water to the outflow of the impoundment. Future projects of this type would benefit from a more extensive hydrologic and geochemical analysis prior to initiation. Had environmental assessments been required at the time of this development, as they now are in Wisconsin for similar projects, some of the problems encountered might have been alleviated.  相似文献   

7.
ABSTRACT: The probable maximum flood (PMF) currently serves as the design standard for many U.S. dams. Floods used for design have increased and currently thousands of dams in the U.S. would be overtopped and possibly fail using the latest calculated PMF at each dam site. Some researchers have suggested that modifying dams to accommodate the PMF could be wasteful. Objections to using the PMF for dam modification include: (1) larger spillway capacity may increase annual downstream flood losses, (2) benefit‐cost ratios may be low, (3) construction accidents associated with dam modification may cause fatalities, and (4) the dollar amount spent to save lives by making dams safer is often very high. Based on these objections, a procedure is presented for evaluating the effectiveness of a proposed dam modification. A change in spillway design policy is recommended. Accepting the status quo at a dam that cannot accommodate the PMF may be the best course of action.  相似文献   

8.
Abstract: Water resources are limited in many areas of the North Slope, Alaska, particularly during winter. Water is used by the oil industry for ice road construction and maintenance, drilling and facility operations, and potable water supplies. The coastal plain between Teshekpuk Lake, in the National Petroleum Reserve‐Alaska (NPR‐A) and the Colville River has numerous shallow lakes, but further south in the northern foothills of the Brooks Range, and east to the Canning River, lakes are fewer. While many oil and gas lease sales have been conducted, or are proposed, access to the leases may be limited because of the lack of available water for ice road construction. Ice roads are the main means by which exploration is conducted in the Arctic, putting a stress on freshwater bodies that do not freeze to the lakebed in winter. Lakes that do not freeze to the lakebed also serve as overwintering habitat for fish. The purpose of this paper is to report on the potential distribution of water bodies that may provide overwinter water in selected areas from Teshekpuk Lake to the Canning River. The project used synthetic aperture radar (SAR) imagery to search for the presence of water in lakes in March 2006. In the Kuparuk and Canning SAR images, 52 and 61% of lakes were frozen to their beds by March 2006, accounting for 49 and 57% of the lake area in these study regions. Conversely, only 2% of the lakes in the Teshekpuk region were frozen to the bottom by March 2006. Unfrozen water was more available because of deeper and more numerous lakes in the Teshekpuk Lake region (west) than in the Canning River area (east). While only specific SAR tiles were analyzed herein, the method will be a useful tool for land managers who seek to evaluate the potential for ice road construction across the Arctic.  相似文献   

9.
Dam removal has emerged as a critical issue in environmental management. Agencies responsible for dams face a drastic increase in the number of potential dam removals in the near future. Given limited resources, these agencies need to develop ways to decide which dams should be removed and in what order. The underlying science of dam removal is relatively undeveloped and most agencies faced with dam removal lack a coherent purpose for removing dams. These shortcomings can be overcome by the implementation of two policies by agencies faced with dam removal: (1) the development and adoption of a prioritization scheme for what constitutes an important dam removal, and (2) the establishment of minimum levels of analysis prior to decision-making about a dam removal. Federal and state agencies and the scientific community must encourage an initial experimental phase of dam removal during which only a few dams are removed, and these are studied intensively. This will allow for the development of the fundamental scientific understanding needed to support effective decision-making in the future and minimize the risk of disasters arising from poorly thought out dam removal decisions.  相似文献   

10.
/ There are tens of thousands of small dams in the United States; many of these aging structures are deteriorating. Governments and dam owners face decisions regarding repair or removal of these structures. Along with the many benefits society derives from dams and their impoundments, numerous recent ecological studies are revealing the extensive alteration and degradation of river ecosystems by dams. Dam removal-a principal restoration strategy-is an infrequent event. The major reasons for removal have been public safety and the high costs associated with repair; the goal of river ecosystem restoration now warrants greater attention. Substantial study is being given to the environmental aspects of dams and dam removals, but very little attention has been given to the socioeconomic and institutional dimensions associated with the removal of dams, although these factors play a significant role in the removal decision-making process. Based on a case study of dam removals in Wisconsin-where more than 30 of the state's 3600 small dams have been removed in the past few decades-legal, financial, and socioeconomic issues associated with dam removal are documented and assessed. Dam removal has been complex and contentious, with limited community-based support for removal and loss of the impounded waters. In cases examined here, the estimated costs of repairing a dam averaged more than three times the cost of removal. The availability of governmental financing has been a key determinant in removal decisions. Watershed-scale ecological considerations are not major factors for most local interests. As watershed management and restoration increasingly include dam removal options as part of an integrated strategy, more attention will need to be focused on socioeconomic factors and stakeholder perspectives-variables that strongly influence the viability of this management alternative.KEY WORDS: Dam removal; River restoration; Institutions; Stakeholders  相似文献   

11.
This article provides a method for examining mesoscale water quality objectives downstream of dams with anticipated climate change using a multimodel approach. Coldwater habitat for species such as trout and salmon has been reduced by water regulation, dam building, and land use change that alter stream temperatures. Climate change is an additional threat. Changing hydroclimatic conditions will likely impact water temperatures below dams and affect downstream ecology. We model reservoir thermal dynamics and release operations (assuming that operations remain unchanged through time) of hypothetical reservoirs of different sizes, elevations, and latitudes with climate‐forced inflow hydrologies to examine the potential to manage water temperatures for coldwater habitat. All models are one dimensional and operate on a weekly timestep. Results are presented as water temperature change from the historical time period and indicate that reservoirs release water that is cooler than upstream conditions, although the absolute temperatures of reaches below dams warm with climate change. Stream temperatures are sensitive to changes in reservoir volume, elevation, and latitude. Our approach is presented as a proof of concept study to evaluate reservoir regulation effects on stream temperatures and coldwater habitat with climate change.  相似文献   

12.
It is becoming more common for public authorities in charge of dam construction and management to inform the population living in the area soon to be submerged by a proposed dam. However, populations living further downstream along a river to be dammed, have often been left to find out by chance, despite the fact that the changes to the river flow regime will have an important impact on their lives, sometimes serious negative impacts. This article makes a comparison between two dams, one at Bort-les-Orgues across the upper Dordogne River in southern France, the other the Bagré Dam over the Nakambé (or White Volta) River in south-eastern Burkina Faso. The article discusses dam construction and operation from the point of view of the concerned populations living in the reservoir and downstream areas.
In 2000, a study was carried out in the Dordogne Valley to ascertain downstream impacts of dam operations and information needs of the population. Suggestions from local river users related mostly to improving public information about predicted and actual flow rates and actual flow in real time along the 300 km course of the Dordogne between the dams and the estuary. Such information should be disseminated as widely as possible through available media, including the Internet, and also displayed visibly in key locations along the length of the river.  相似文献   

13.
Abstract: This study used an innovative GIS/remote sensing approach to study historical river channel changes in the Huron River, a wandering gravel‐bedded river in northern Ohio. Eight sets of historical aerial photographs (1958‐2003) span the construction of a low‐head dam (1969), removal of the spillway (1994), and removal of the dam itself (2002). Construction of the dam modified stream gradients >4 km upstream of the small impounded reservoir. This study tracked changes in the polygon size, shape, and centroid position of 12 sand‐gravel bars through a study reach 0.2‐4.1 km upstream of the dam. These bars were highly responsive, tending to migrate obliquely downstream and toward the outer bank at rates up to 9 m/year. Historical changes in the size and position of the bars can be interpreted as the downstream translation of one or more sediment waves. Prior to dam construction, a sediment wave moved downstream through the study reach. Following construction of the dam, this sediment wave became stationary and degraded in situ by dispersion. The growth of bars throughout the study reach during this time interval resulted in a progressive increase in channel sinuosity. Removal of the spillway rejuvenated downstream translation of a sediment wave through the study reach and was followed by a reduction in channel sinuosity. These results illustrate that important geomorphologic changes can occur upstream of low‐head dams. This may be a neglected area of research about the effects of dams and dam removals.  相似文献   

14.
/ The species richness of shoreline vegetation of unregulated lakes in Nova Scotia, Canada, is known to increase as a function of catchment area, a topographic variable governing water level fluctuations. Predictions based on catchment area however, fail to account for richness patterns at the margins of lakes enlarged by dams. Here, we compare the vegetation and hydrological regimes of regulated and unregulated systems. Hydrological regimes of regulated systems deviated from natural systems of similar catchment area by being either hypovariable or hypervariable for both within-year and among-year fluctuations in water level. Plant communities of dammed systems were less diverse, contained more exotic species, and were, with one exception, devoid of rare shoreline herbs. Data from "recovering," or previously dammed systems indicated that shoreline communities can be restored upon return of the appropriate hydrological regime. Using observed within-year and among-year water level fluctuation data, we propose a general model for the maintenance or restoration of diverse herbaceous wetlands on shorelines of temperate lakes or reservoirs. Managers can manipulate the within-year water level variation within prescribed limits (1-2 m), while ensuring that among-year variation (SD of summer levels) is less than 25% of within-year variation. This preliminary model is based on data from low-fertility, temperate lakes in river systems. To calibrate the model, plant community data from other regions are needed, as are long-term water-level data for unregulated lakes, data which are essential but largely lacking in many areas.KEY WORDS: Catchment area; Regulated lakes; Shoreline restoration; Rare plants; Exotic plants; Diversity  相似文献   

15.
ABSTRACT: To facilitate decisions regarding the need for modification of potentially unsafe dams, the U.S. Bureau of Reclamation developed procedures for assessing the threat to human lives posed by the failure of individual dams. The procedures provide a conceptual model of the variables influencing the loss of life from dam failure and a method for predicting loss of life based on the size of the population at risk from failure and the amount of warning time available for that population. The prediction equations are based on an analysis of 24 dam failures and major flash floods occurring since 1950. Adjustments to the predictions to reflect special local conditions are also discussed.  相似文献   

16.
Conclusions In addition to this natural water-holding capacity of completely forested mountains, development for conservation of water should insure man-made mountain water storage systems, consisting of tanks, ponds, small dams and reservoirs, and artificial lakes at varying altitudes in the Himalayas. An elaborate system of canals would be needed to carry clean water for drinking and cultivation. Alternatively, adjacent highland lakes may be linked up by canals provided with wiers and sluice gates, to carry water to all levels.  相似文献   

17.
ABSTRACT: The fact that dams have failed indicates that there is still a risk involved, in spite of the major effort to ensure reliability. In seeking ways to reduce the risk, all aspects of the design, construction, monitoring, inspection, and rehabilitation of earth dams should be examined. Because dam classification is a central element, ways of minimizing uncertainty associated with classification need to be considered. A Bayesian approach to classification has numerous advantages over existing methods of earth dam classification because it directly evaluates the effects of uncertainties. A framework for incorporating Bayesian decision theory into the classification process is presented.  相似文献   

18.
19.
Abstract: In northern regions, large volumes of water are needed for activities such as winter road construction. Such withdrawals, particularly from small lakes, can reduce oxygen concentrations and water levels, potentially affecting aquatic organisms. Withdrawal limits have been developed by regulatory agencies, but are largely theoretical. Water withdrawal thresholds were tested in two small lakes by removing 10% and 20% of their respective under‐ice volumes and comparing oxygen parameters, temperature, over‐wintering habitat, and northern pike (Esox lucius) abundance to reference conditions. Because of a milder winter, oxygen parameters were elevated in reference lakes in the period following withdrawal compared to the prewithdrawal period. The 10% withdrawal resulted in a ?0.2 m shift in the oxygen concentration profile at 4 mg/l in that lake, but had no effect on total volume‐weighted oxygen, or volume of over‐wintering habitat. In contrast, the 20% withdrawal caused 0.7 m reduction in the oxygen concentration profile at 4 mg/l compared to the previous year, a 26% decline in the volume‐weighted oxygen concentration, and a 23% reduction in the volume of over‐wintering habitat compared to prewithdrawal conditions. Water temperatures were slightly (≤ 10%) colder in the upper strata in the year following the withdrawal in both withdrawal and reference lakes. Northern pike abundance was not impacted by water withdrawals in either of the lakes. The results of this study show that the effects of water withdrawal on the parameters investigated reflected the characteristics of the lakes, and would therefore be expected to vary from lake to lake. Policy development to mitigate impacts must therefore reflect the site‐specific nature of water withdrawal.  相似文献   

20.
One uncertainty associated with large dam removal is the level of downstream sediment deposition and associated short‐term biological effects, particularly on salmonid spawning habitat. Recent studies report downstream sediment deposition following dam removal is influenced by proximity to the source and river transport capacity. The impacts of dam removal sediment releases are difficult to generalize due to the relatively small number of dam removals completed, the variation in release strategies, and the physical nature of systems. Changes to sediment deposition and associated streambed composition in the Elwha River, Washington State, were monitored prior to (2010‐2011) and during (2012‐2014) the simultaneous removal of two large dams (32 and 64 m). Changes in the surface layer substrate composition during dam removal varied by year and channel type. Riffles in floodplain channels downstream of the dams fined and remained sand dominated throughout the study period, and exceeded levels known to be detrimental to incubating salmonids. Mainstem riffles tended to fine to gravel, but appear to be trending toward cobble after the majority of the sediment was released and transported through system. Thus, salmonid spawning habitats in the mainstem appear to have been minimally impacted while those in floodplain channels appear to have been severely impacted during dam removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号