首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Lee TM  Lai HY  Chen ZS 《Chemosphere》2004,57(10):1459-1471
The availability of metal in contaminated soil can be reduced by the addition of soil amendments. The objectives of this study are to study the effects of applying different soil amendments on the concentration of Cd and Pb in soil solution, DTPA or EDTA extractable Cd and Pb, and the uptake of Cd and Pb by wheat (Triticum vulgare) when growing in long-term Cd and Pb-contaminated soils, more than 20 years. The soil amendments, including check, compost, zinc oxide, calcium carbonate, calcium carbonate mixed with zinc oxide, and calcium carbonate mixed with compost, were conducted in a four replicates pot cultural study. The amended soils were incubated for six months under 60% of water holding capacity. Following incubation, wheat was grown for four months in greenhouse. Analyses of Cd concentration demonstrated a significant decrease in soil solution concentration and DTPA or EDTA extractable in soils amended with calcium carbonate or calcium carbonate mixed with ZnO (or compost) (p<0.01). These amendments can significantly reduce the Cd concentration in the grain, leaf and stem, or reduce the total Cd uptake in all parts of wheat species grown in highly contaminated soil amended with calcium carbonate or calcium carbonate mixed with ZnO (or compost) (p<0.01). The concentration of Cd in soil solution and extracted with DTPA or EDTA can predict the Cd concentration in wheat, especially for soil solution.  相似文献   

2.
Chemical methods and phytoremediation of soil contaminated with heavy metals   总被引:43,自引:0,他引:43  
Chen HM  Zheng CR  Tu C  Shen ZG 《Chemosphere》2000,41(1-2):229-234
The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.  相似文献   

3.
Castaldi P  Santona L  Melis P 《Chemosphere》2005,60(3):365-371
The effects of chemical amendments (zeolite, compost and calcium hydroxide) on the solubility of Pb, Cd and Zn in a contaminated soil were determined. The polluted soil was from the Southwest Sardinia, Italy. It showed very high total concentrations of Pb (19663 mgkg(-1) d.m.), Cd (196 mgkg(-1) d.m.) and Zn (14667 mgkg(-1) d.m.). The growth and uptake of heavy metals by white lupin (Lupinus albus L., cv. Multitalia) in amended soils were also studied in a pot experiment under greenhouse conditions. Results showed that the amendments increased the residual fraction of heavy metals in the soils, and decreased the heavy metals uptake by white lupin compared with the unamended control. Among the three amendments, compost and Ca(OH)2 were the most efficient at reducing Pb and Zn uptake, while zeolite was the most efficient at reducing Cd uptake by the plants. White lupin growth was better in amended soils than in unamended control. The above ground biomass increased with a factor 1.8 (soil amended with zeolite), 3.6 (soil amended with compost) and 3.1 (soil amended with Ca(OH)2) with respect to unamended soil. The roots biomass increased with a factor 1.4 (soil amended with zeolite), 5.6 (soil amended with compost) and 4.8 (soil amended with Ca(OH)2). Results obtained suggest that the soil chemical treatment improved the performance of crops by reducing bioavailability of metals in the soils. However it would be therefore interesting to find a suitable mixture of these amendments to contemporarily immobilize the three main pollutants in the polluted soils.  相似文献   

4.
Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites   总被引:17,自引:0,他引:17  
Evaluation of metal accumulation in soils and plants is of environmental importance due to their health effects on humans and other biota. Soil material and plant tissue were collected along transects in two heavily contaminated facilities, a Superfund site and a lead-acid battery dump, and analyzed for metal content. Soil lead (Pb), cadmium (Cd) and barium (Ba) concentrations for the Superfund site averaged 55,480, 8.5 and 132.3 mg/kg, respectively. Soil Pb occurred primarily in the carbonate, sulfide/residual and organic chemical fractions (41.6, 28.6 and 16.7%, respectively). Soil Pb, Cd and Ba concentrations for the dump site averaged 29,400, 3.9 and 1130 mg/kg, respectively. Soil Pb occurred mostly in the organic and carbonate fractions as 48.5 and 42.5%, respectively. Pb uptake in the two sites ranged from non-detectable (Agrostemma githago, Plantago rugelii, Alliaria officinalis shoots), to 1800 mg/kg (Agrostemma githago root). Cd uptake was maximal in Taraxacum officinale at 15.4 mg/kg (Superfund site). In the majority > or =65%) of the plants studied, root Pb and Cd content was higher than that for the shoots. Tissue Pb correlated slightly with exchangeable and soluble soil Pb; however, tissue Cd was poorly correlated with soil Cd species. None of the sampled plants accumulated measurable amounts of Ba. Those plants that removed most Pb and Cd were predominantly herbaceous species, some of which produce sufficient biomass to be practical for phytoremediation technologies. Growth chamber studies demonstrated the ability of T. officinale and Ambrosia artemisiifolia to successfully remove soil Pb and Cd during repeated croppings. Tissue Pb was correlated with exchangeable soil Pb at r(2)=0.68 in Ambrosia artemisiifolia.  相似文献   

5.
Metal-contaminated soils in the vicinity of industrial sites become of ever-increasing concern. Diagnostic criteria and ecological technologies for soil remediation should be calibrated for various soil conditions; actually, our knowledge of calcareous soil is poor. Silty soils near smelters at Evin (Pas de Calais, France) have been contaminated by non-ferrous metal fallout and regularly limed using foams. Therefore, the mobility, bioavailability, and potential phytotoxicity of Cd, Pb and Zn, were investigated using single soil extractions (i.e. water, 0.1 n Ca(NO(3))(2), and EDTA pH 7), and vegetation experiments, in parallel with a biological test based on (iso)-enzymes in leaves and roots, before and following soil treatment with chemical agents, i.e. Thomas basic slags (TBS), hydrous manganese oxide (HMO), steel shots (ST) and beringite. No visible toxicity symptoms developed on the above-ground parts of ryegrass, tobacco and bean plants grown in potted soil under controlled environmental conditions. Cd, Zn and Pb uptake resulted in high concentrations in the above-ground plant parts, but the enzyme capacities in leaves and roots, and the peroxidase pattern indicated that these metal concentrations were not phytotoxic for beans as test plants. The addition of chemical agents to the soil did not increase biomass production, but treatment with either HMO, ST or beringite markedly decreased the mobility of Cd, Zn and Pb. These agents were proven to be effective in mitigating the Cd uptake by plants. HMO and ST decreased either Pb or Zn uptake by ryegrass. TBS was effective in lowering Pb uptake by the same species. Beringite decreased Cd uptake by beans. If fallout could be restricted, the metal content of food crops in this area should be lowered by soil treatment. However, the differences in Cd uptake between plant species were not suppressed, regardless of the type of agents applied to the soil.  相似文献   

6.
Seven soils which had been polluted with heavy metals from a zinc smelter were sequentially extracted so that Cd, Zn, and Pb could be partitioned into five operationally defined geochemical fractions: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. Kidney beans were planted in the soils to examine the effect of concentration and chemical form of the metals in soil on the growth and metal uptake of the plants. The growth of kidney bean was restricted in heavy metal polluted soils compared with controls. Metal concentration and metal uptake by plants were correlated. The highest relationship was found between amount of metal uptake and the metal concentration in exchangeable + carbonate forms. The uptake of metals was according to their solubility sequence, i.e. Cd > Zn > Pb. The uptake rate of exchangeable + carbonate forms was the same for the three elements.  相似文献   

7.
Lai HY  Chen ZS 《Chemosphere》2004,55(3):421-430
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from contaminated soils. Vetiver grass (Vetiver zizanioides) has strong and long root tissues and is a potential phytostabilization plant since it can tolerate and grow well in soils contaminated with multiple heavy metals. Soil was moderately artificially contaminated by cadmium (20 mg/kg), zinc (500 mg/kg), and lead (1000 mg/kg) in pot experiments. Three concentrations of Na2-EDTA solution (0, 5, and 10 mmol/kg soil) were added to the contaminated soils to study the influence of EDTA solution on phytoextraction by rainbow pink or phytostabilization by vetiver grass. The results showed that the concentrations of Cd, Zn, and Pb in a soil solution of rainbow pink significantly increased following the addition of EDTA (p < 0.05). The concentrations of Cd and Pb in the shoots of rainbow pink also significantly increased after EDTA solution was applied (p < 0.05), but the increase for Zn was insignificant. EDTA treatment significantly increased the total uptake of Pb in the shoot, over that obtained with the control treatment (p < 0.001), but it did not significantly increase the total uptake of Cd and Zn. The concentrations of Zn and Pb in the shoots of rainbow pink are significantly correlated with those in the soil solution, but no relationship exists with concentrations in vetiver grass. The toxicity of highly contaminating metals did not affect the growth of vetiver grass, which was found to grow very well in this study. Results of this study indicate that rainbow pink can be considered to be a potential phytoextraction plant for removing Cd or Zn from metal-contaminated soils, and that vetiver grass can be regarded as a potential phytostabilization plant that can be grown in a site contaminated with multiple heavy metals.  相似文献   

8.
海泡石及其复配材料钝化修复镉污染土壤   总被引:19,自引:2,他引:17  
选取湖北大冶Cd污染土壤,采用室外盆栽实验,研究了海泡石、酸改性海泡石以及二者与石灰、磷酸盐配合使用对油菜生物量、体内Cd含量以及土壤pH和有效态Cd含量的影响。结果表明,不同钝化剂处理均能有效提高油菜地上部和根部生物量,最大分别提高1.03和1.43倍,复合处理以及改性海泡石单一处理的增产效果优于海泡石单一处理。不同钝化剂处理均能显著降低油菜地上部和根部Cd含量,最大分别降低66.40%和22.68%。钝化剂复合处理比单一处理对降低油菜Cd吸收的效果显著,6%的钝化剂添加量较为合适。钝化剂复合处理以及海泡石单一处理均能显著提高土壤pH。不同钝化剂处理均能显著降低土壤有效态Cd含量,钝化剂复合处理对土壤Cd有效性的影响要比单一处理显著。综合实验结果,海泡石与磷酸盐复合处理对土壤Cd污染的钝化修复效果最佳。  相似文献   

9.
The effect of sewage sludge on the mobility and the bioavailability of trace metals in plant-soil systems have aroused wide interested and been widely explored. Based on a wheat-cultivating experiment, the effect of municipal sludge compost (MSC) on the mobility and bioavailability of Cd in a soil-wheat system was studied. With the application of MSC, soil organic matter (SOM), total nitrogen (TN), and total phosphorus (TP) in the soil increased significantly, while concentrations of trace metals (Cu, Zn, Ni, Pb, Cd) were below the China’s minimum thresholds. The application of MSC could improve wheat growth. The application of MSC at the rate of 0.5 % had no significant effect on the chemical fraction distribution of Cd in soil. In two soil treatments, Cd mainly existed in the labile chemical fractions (exchangeable chemical fraction (EXCF) and carbonate chemical fraction (CABF)). However, the application of MSC could reduce accumulation of Cd by wheat. Cd contents in each part of the MSC-applied wheat were significantly less than that of non-MSC-applied wheat. In the tested soils, the extractable concentrations decreased in the order: EDTA > MgCl2 ≈ NH4OAc > DTPA. There were no significant differences between soil treatments in the amounts of extractable Cd when the extraction was done under neutral conditions, although significant differences were observed when the extraction was done under alkaline conditions. In this study, the DTPA extraction procedure provided a good indication of Cd bioavailability. Our results suggest that, in the short term at least, amending soils with MSC may benefit crop dry matter production while not increasing the risk of human exposure to Cd through consumption of wheat grown on MSC-amended soils.  相似文献   

10.
Lai HY  Chen ZS 《Chemosphere》2005,60(8):1062-1071
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in rainbow pink shoots. The proposed method worked especially well for Pb (p<0.05). The application of 2 mmol EDTA kg(-1) might too low to enhance the phytoextraction effect when used in silty clay soils.  相似文献   

11.
Heavy metal pollution is a severe environmental problem. Remediation of contaminated soils can be accomplished using environmental materials that are low cost and environmentally friendly. We evaluated the individual and combination effects of humic acid (HA), super absorbent polymer (SAP), zeolite (ZE), and fly ash composites (FC) on immobilization of lead (Pb) and cadmium (Cd) in contaminated soils. We also investigated long-term practical approaches for remediation of heavy metal pollution in soil. The biochemical and morphological properties of maize (Zea mays L.) were selected as biomarkers to assess the effects of environmental materials on heavy metal immobilization. The results showed that addition of test materials to soil effectively reduced heavy metal accumulation in maize foliage, improving chlorophyll levels, plant growth, and antioxidant enzyme activity. The test materials reduced heavy metal injury to maize throughout the growth period. A synergistic effect from combinations of different materials on immobilization of Pb and Cd was determined based on the reduction of morphological and biochemical injuries to maize. The combination of zeolite and humic acid was especially effective. Treatment with a combination of HA?+?SAP?+?ZE?+?FC was superior for remediation of soils contaminated with high levels of Pb and Cd.  相似文献   

12.
Lestan D  Hanc A  Finzgar N 《Chemosphere》2005,61(7):1012-1019
The effect of soil ozonation on Pb and Zn extraction with EDTA, bioavailability (Ruby's Physiologically Based Extraction Test, PBET) and mobility (Toxicity Characteristic Leaching Procedure, TCLP) of Pb was studied on contaminated soils taken from 7 different locations in the Mezica Valley, Slovenia. EDTA extraction (40 mmol kg(-1)) removed from 27.4+/-1.5% to 64.8+/-1.5% of Pb, and from 1.9+/-0.2% to 22.4+/-2.0% of Zn from tested soils, and significantly reduced soil Pb bioavailability (PBET) and mobility (TCLP). Pretreatment of tested soils with ozone before EDTA extraction enhanced EDTA extractability of Pb for 11.0 to 28.9%, but had no effect on the extractability of Zn. In most of the soils, ozonation had no statistically significant effect on bioavailability and mobility of Pb, residual after EDTA extraction. Using linear regression analysis we found a significant increase (p<0.01) in EDTA extractability of Pb after soil ozonation in soils with a higher initial Pb content. EDTA extractability of Pb after soil ozonation was also significantly higher for soils with a lower Pb extractability when treated with EDTA alone. We found no correlation between soil organic matter content and the percentage of the Pb fraction bound to soil organic matter (where from 25.6+/-1.3% to 73.2+/-0.6% of Pb reside in tested soils) and Pb extractability with EDTA after soil ozonation.  相似文献   

13.
Heavy metals are potentially toxic to human life and the environment. Their contaminating effect in soils depends on chemical associations. Hence, determining the chemical form of a metal in soils is important to evaluate its mobility and bioavailability. We utilized a sequential extraction procedure and sorption isotherms (monometal and competitive) to evaluate the mobility and distribution of Cd, Cu, Ni, Pb, and Zn in four soils differing in their physicochemical properties: Calcixerollic Xerochrepts (Cx1 and Cx2), Paralithic Xerorthent (Px) and Lithic Haplumbrept (Lh). Most of the metals retained under point B conditions of sorption isotherms were extracted from the more mobile fractions: exchangeable and carbonates, in contrast with the profiles of the original soils where metals were preferently associated with the residual fraction. In soils having carbonate concentration under 6% (Cx1 and Lh), the exchangeable fraction was predominant, whereas in calcareous soils (Cx2 and Px) metals extracted from carbonates predominated. Partitioning profiles were in accordance with the affinity sequences deduced from the initial slope of isotherms and showed that the soils had a greater number of surface sites and higher affinity for Pb and Cu than for Cd, Ni, or Zn. In general, the simultaneous presence of the cations under study increased the percentages of metals released in the exchangeable fraction. The tendency towards less specific forms was more noticeable in Cx2 and Px soils and for Ni, Zn, and Cd. The affinity of inorganic surfaces was larger for Zn than for Cd or Ni, but the affinity of organic surfaces was larger for Cd or Ni than for Zn.  相似文献   

14.
The Siam weed, Chromolaena odorata (L.) King & Robinson, Family Asteraceae, was found to be a new Pb hyperaccumulator by means of field surveys on Pb soil and hydroponic studies. Plants from field collection accumulated 1377 and 4236mgkg(-1) Pb in their shoots and roots, respectively, and could tolerate soil Pb concentrations up to 100000 mgkg(-1) with a translocation factor of 7.62. Very low concentrations of Cd and Zn were found in plants collected from the field. Under nutrient solution culture condition, C. odorata from the contaminated site (CS) and from non-contaminated site (NCS) grew normally with all three metals (Pb, Cd, Zn) supplied. However, the relative growth rates of all treated plants decreased with increased metal concentrations. The percentage uptakes of Pb, Cd, and Zn by C. odorata increased with increasing metal concentrations. Pb concentration in shoots and roots reached its highest values (1772.3 and 60655.7mgkg(-1), respectively) at a Pb supply level of 10mgl(-1). While the maximum concentrations of Cd (0.5mgl(-1)) in shoots and roots of C. odorata were 102.3 and 1440.9mgkg(-1), and the highest concentrations of Zn (20mgl(-1)) were 1876.0 and 7011.8mgkg(-1), respectively. The bioaccumulation coefficients of Pb and Cd were greater than 1000. These results confirm that C. odorata is a hyperaccumulator which grows rapidly, has substantial biomass, wide distribution and has a potential for the phytoremediation of metal contaminated soils.  相似文献   

15.
A lysimeter approach (under natural climatologic conditions) was used to evaluate the effect of four metal immobilizing soil treatments [compost (C), compost+cyclonic ashes (C+CA), compost+cyclonic ashes+steel shots (C+CA+SS)) and cyclonic ashes+steel shots (CA+SS)] on metal leaching through an industrially contaminated soil. All treatments decreased Zn and Cd leaching. Strongest reductions occurred after CA+SS and C+CA+SS treatments (Zn: -99.0% and -99.2% respectively; Cd: -97.2% and -98.3% respectively). Copper and Pb leaching increased after C (17 and >30 times for Cu and Pb respectively) and C+CA treatment (4.4 and >3.7 times for Cu and Pb respectively). C+CA+SS or CA+SS addition did not increase Cu leaching; the effect on Pb leaching was not completely clear. Our results demonstrate that attention should be paid to Cu and Pb leaching when organic matter additions are considered for phytostabilization of metal contaminated soils.  相似文献   

16.
Plants grown in contaminated areas may accumulate trace metals to a toxic level via their roots and/or leaves. In the present study, we investigated the distribution and sources of Pb and Cd in maize plants (Zea mays L.) grown in a typical zinc smelting impacted area of southwestern China. Results showed that the smelting activities caused significantly elevated concentrations of Pb and Cd in the surrounding soils and maize plants. Pb isotope data revealed that the foliar uptake of atmospheric Pb was the dominant pathway for Pb to the leaf and grain tissues of maize, while Pb in the stalk and root tissues was mainly derived from root uptake. The ratio of Pb to Cd concentrations in the plants indicated that Cd had a different behavior from Pb, with most Cd in the maize plants coming from the soil via root uptake.  相似文献   

17.
A set of periurban calcareous agricultural Mediterranean soils was spiked with a mixture of Cd, Cu, Pb and Zn at two levels within the limit values proposed by current European legislation, incubated for up to 12 months, and subjected to various one-step extraction procedures to estimate mobile (neutral salts) and potentially mobile metal fractions (complexing and acidic extraction methods). The results obtained were used to study metal extractability patterns according to the soil characteristics. The analytical data were coupled with mineralogical investigations and speciation modelling using the Visual Minteq model. The formation of soluble metal-complexes in the complexing extracts (predicted by the Visual Minteq calculations) led to the highest extraction efficiency with complexing extractants. Metal extractability patterns were related to both content and composition of carbonate, organic matter, Fe oxide and clay fractions. Potentially mobile metal fractions were mainly affected by the finest soil fractions (recalcitrant organic matter, active lime and clay minerals). In the case of Pb, scarce correlations between extractable Pb and soil constituents were obtained which was attributed to high Pb retention due to the formation of 4PbCO3·3PbO (corroborated by X-ray diffraction). In summary, the high metal proportion extracted with complexing agents highlighted the high but finite capacity to store potentially mobilizable metals and the possible vulnerability of these soils against environmental impact from metal accumulation.  相似文献   

18.
Arsenic poses a major environmental and human health problem because of its carcinogenic nature and effect on the ecosystem. Therefore, a cost effective and socially acceptable technique is needed for its remediation. The effect of different combinations of compost amended with zeolite and/or iron oxide (up to 20% w/w) was tested on a contaminated soil with high arsenic levels (34470 mg kg(-1)). The bioavailability of arsenic was determined in terms of uptake by rye grass (Lolium perenne L.) under greenhouse experimental conditions. The results indicated that the arsenic concentrations in the rye grass was reduced to 2 mg kg(-1) dry weight by using 15% compost with 5% iron oxide and 15% compost with 5% zeolite. Less than 0.01% of the total arsenic content in the soil was being taken up by the plants. Both treatments were effective in establishing significantly higher plant growth on the contaminated soil compared to other treatments. The results from sequential extraction tests indicated that in all the compost-amended soils, there was a reduction in the soluble fraction (10-37%). Arsenic in soil was examined using Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy. The results indicated that arsenic was distributed mostly within the matrix of iron and oxygen in treated samples. Amongst various treatment mixtures tested, high percent of compost (15%) with zeolite (5%) and/or iron oxide (5%) is effective in reducing arsenic uptake by plants and establish re-vegetation on the contaminated soil.  相似文献   

19.
Chen Y  Li X  Shen Z 《Chemosphere》2004,57(3):187-196
In a pot experiment, the potential use of 10 plant species, including six dicotyledon species and four monocotyledon species, was investigated for the EDTA-enhanced phytoextraction of Pb from contaminated soil. Mung bean and buckwheat had a higher sensitivity to the EDTA treatment in soils. In the 2.5 and 5.0 mmol kg(-1) EDTA treatments, the Pb concentrations in the shoots of the six dicotyledon species ranged from 1,000 to 3,000 mg kg(-1) of dry matter, which were higher than those of the monocotyledon species. The highest amount of phytoextracted Pb (2.9 mg Pb pot(-1)) was achieved in sunflowers, due to the high concentration of Pb in their shoots and large biomass, followed by corns (1.8 mg Pb pot(-1)) and peas (1.1 mg Pb pot(-1)). The leaching behavior of heavy metals as a result of applying EDTA to the surface of the soil was also investigated using short soil-leaching columns (9.0-cm diameter, 20-cm height) by the percolation of artificial rainfall. About 3.5%, 15.8%, 13.7% and 20.6% of soil Pb, Cu, Zn and Cd, respectively, were leached from the soil columns after the application of 5.0 mmol kg(-1) of EDTA. The growth of sunflowers in the soil columns had little effect on the amount of metals that were leached out. This was probably due to the shallowness of the layer of soil, the short time-span of the uptake of metals by the plant and the plant's simple root systems.  相似文献   

20.
The impact of coal mine dump contaminated soil on the elemental uptake by two edible plants, namely, Amaranthus dubius (red herbs) and Amaranthus hybridus (green herbs), was studied by investigating their response and ability to tolerate and accumulate varying levels of elements in their roots and shoots. The vegetation was grown on varying amounts of contaminated soil, viz. 0%, 5%, 15%, 25% w/w using coal mine dump soil. The soil was analyzed for soil pH, cation exchange capacity (CEC), soil organic matter (SOM), moisture content, and selected heavy metals. The distribution of six metals, namely, Pb, Cd, Hg, Ni, Mn, and Fe, in roots, stem, and leaves of the plants was determined in two stages of growth after 5 weeks and 10 weeks. All soil and plant samples were microwave digested and subjected to heavy metal analysis using the ICP-OES, GFAAS, and CVAAS. The pH of the coal mine dump contaminated soil decreased with an increase in contamination. Both the SOM and CEC values decreased, which increases the availability of elements, by providing more binding sites in the soil. Relatively, the red herbs had higher elemental concentrations than the green herbs. Both plants recorded high manganese accumulation. No mercury was detected in the soils or plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号