首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Traffic emission factors of ultrafine particles: effects from ambient air   总被引:1,自引:0,他引:1  
Ultrafine particles have a significant detrimental effect on both human health and climate. In order to abate this problem, it is necessary to identify the sources of ultrafine particles. A parameterisation method is presented for estimating the levels of traffic-emitted ultrafine particles in terms of variables describing the ambient conditions. The method is versatile and could easily be applied to similar datasets in other environments. The data used were collected during a four-week period in February 2005, in Gothenburg, as part of the G?te-2005 campaign. The specific variables tested were temperature (T), relative humidity (RH), carbon monoxide concentration (CO), and the concentration of particles up to 10 μm diameter (PM(10)); all indicators are of importance for aerosol processes such as coagulation and gas-particle partitioning. These variables were selected because of their direct effect on aerosol processes (T and RH) or as proxies for aerosol surface area (CO and PM(10)) and because of their availability in local monitoring programmes, increasing the usability of the parameterization. Emission factors are presented for 10-100 nm particles (ultrafine particles; EF(ufp)), for 10-40 nm particles (EF(10-40)), and for 40-100 nm particles (EF(40-100)). For EF(40-100) no effect of ambient conditions was found. The emission factor equations are calculated based on an emission factor for NO(x) of 1 g km(-1), thus the particle emission factors are easily expressed in units of particles per gram of NO(x) emitted. For 10-100 nm particles the emission factor is EF(ufp) = 1.8×10(15)×(1 - 0.095×CO - 3.2×10(-3)×T) particles km(-1). Alternative equations for the EFs in terms of T and PM(10) concentration are also presented.  相似文献   

2.
Mass concentrations of PM 10 and PM 2.5 are planned as new standards for the monitoring of ambient air quality in the European Union. Standard procedure is the removal of particles > 10 microns and > 2.5 microns aerodynamic diameter, respectively, by impaction in a preseparator. Different samplers work according to different principles of flow control. The influence of ambient temperature, pressure and relative humidity on different devices is calculated to estimate the comparability of various aerosol samplers. Therefore, the effects of these ambient factors on the volume flow as well as on the cut-off dp50 are investigated. In a second step, the influence of relative humidity on the flow control device is calculated. The results show that the cut-off shifts (up to 6.4%) for varying ambient conditions. Therefore, the influence on the impaction process should not be neglected and an 'ideal sampler' would measure temperature, pressure and relative humidity and adapt the volume flow to avoid a systematic error in the cut-off.  相似文献   

3.
During the 2002-2003 austral summer field season, aerosol samples were collected at a coastal (Terra Nova Bay--Northern Victoria Land) and an inland site (Dome C--East Antarctic Plateau). The sampling was carried out by stacked filter units made up of two filters at different porosity (5.0 and 0.4 microm at Terra Nova Bay and 3.0 and 0.4 microm at Dome C), able to roughly separate a coarse from a fine fraction. At Dome C, a further investigation on aerosol size distribution was performed by an inertial impactor able to collect aerosol particles on 8 size classes (from 10 to 0.4 microm). Atomic Force Microscopy was applied to the filter collecting the finer fraction in both sites in order to assess the real cut-off value of the filter sandwich apparatus and to reconstruct the volume size distribution. At the employed flow conditions, the real cut-off value was revealed to be about one third with respect to the filter nominal porosity in both stations. The size distribution plots showed a bimodal distribution with a mode centered around 0.22 microm in both the sites and a second broader mode which is centered between 0.3 microm and 1.2 microm diameter at Terra Nova Bay and shifted toward higher values (centred around 1.0 microm diameter) at Dome C. Each filter was analysed for the main and trace ionic components allowing evaluation of the contributions of primary and secondary aerosol sources at the two sites as a function of the particle size class. The coastal site is mainly affected by primary and secondary marine inputs: the sea spray contribution (Na+, Mg2+, Cl- and ssSO4(2-)) is dominant (77% w/w) in the coarse fraction whereas the biogenic source (methanesulfonate and nssSO4(2-)) prevails (67.5% w/w) in the fine fraction. In this fraction a significant contribution (15.5% w/w) is provided by ammonium likely to be related to surrounding penguin colonies. Dome C atmosphere is characterised by fine particles arising from secondary sources and long-range transport processes. The main component in the fine and coarse fractions at Dome C is sulfate whose nssSO4(2-) represents the 99.5% and the 92.3%(w/w) in fine and coarse fraction, respectively. The observed agreement between nssSO4(2-) and methanesulfonate temporal profiles in the fine fraction demonstrates that biogenic emissions dominate the inland background aerosol. Results from the sampling by the 8-stage impactor at Dome C are presented here: chloride and nitrate are mainly deposited on the 10-2.1 microm stages while the highest sulfate concentration was found in the submicrometric fraction which turned out to be the most acidic. Such a distribution is able to prevent nitrate and chloride re-emission as gaseous HCl and HNO3 in the 10-2.1 microm stages, arising from the exchange reaction between chloride and nitrate salts and sulfuric acid. Moreover, the concentration peak observed for nitrate in coarser fractions is probably related also to the formation of hygroscopic NH4NO3 particles and nitrate adsorption on sea salt particles.  相似文献   

4.
About 60,000 particles in 288 aerosol samples collected during farm work have been characterised with automated particle analysis using scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). Based on EDS-analysis of materials with known composition (potato flour, alpha-quartz, K-feldspar and beta-wollastonite), criteria were developed for classification of particles as: (1) organic, (2) silicon-rich (silica), and (3) other inorganic particles. The reproducibility of the relative mass proportions in dust samples collected during farm work was 0.078 when approximately 200 particles were characterised per sample. Field samples from the farm environment showed clear differences in composition. Generally, inorganic particles dominated the particle mass. The proportion of the organic particle mass was highest for tending of swine and poultry, 55 and 38% respectively. Silica particles amounted to 10 to 20% of the total mass during handling crops, e.g. grain, straw, hay, potatoes, and onions. It seems likely that the results can be used in etiologic studies, but further validation would be needed for quantitative purposes.  相似文献   

5.
Recent research has indicated that insoluble ultrafine aerosols (ie., particles whose physical diameters are less than 100 nm) may cause adverse health effects due to their small size, and that toxicological response may be more appropriately represented by particle number or particle surface area. Unfortunately, current exposure criteria and the associated air-sampling techniques are primarily mass-based. Welding processes are high-temperature operations that generate substantial number concentrations of ultrafine aerosols. Welding aerosols are formed primarily through the nucleation of metal vapors followed by competing growth mechanisms such as coagulation and condensation. Experimental results and mathematical tools are presented to illustrate how welding metallurgy influences the chemical aspects and dynamic processes that initiate and evolve the resultant aerosol. This research suggests that a fundamental understanding of metallurgy and aerosol physics can be exploited to suppress the formation of undesirable chemical species as well as the amount of aerosol generated during a welding process.  相似文献   

6.
Satellite-retrieved data on aerosol optical depth (AOD) and Ångström exponent (AE) using a moderate resolution imaging spectrometer (MODIS) were used to analyze large-scale distributions of atmospheric aerosols in East Asia. AOD was relatively high in March (0.44?±?0.25) and low in September (0.24?±?0.21) in the East Asian region in 2009. Sandstorms originating from the deserts and dry areas in northern China and Mongolia were transported on a massive scale during the springtime, thus contributing to the high AOD in East Asia. However, whereas PM10 with diameters ≤10 μm was the highest in February at Anmyon, Cheongwon, and Ulleung, located leeward about halfway through the Korean Peninsula, AOD rose to its highest in May. The growth of hygroscopic aerosols attendant on increases in relative humidity prior to the Asian monsoon season contributed to a high AOD level in May. AE typically appears at high levels (1.30?±?0.37) in August due to anthropogenic aerosols originating from the industrial areas in eastern China, while AOD stays low in summer due to the removal process caused by rainfall. The linear correlation coefficients of the MODIS AOD and ground-based mass concentrations of PM10 at Anmyon, Cheongwon, and Ulleung were measured at 0.4~0.6. Four cases (6 days) of mineral dustfall from sandstorms and six cases (12 days) of anthropogenically polluted particles were observed in the central area of the Korean Peninsula in 2009. PM10 mass concentrations increased at both Anmyon and Cheongwon in the cases of mineral dustfall and anthropogenically polluted particles. Cases of dustfall from sandstorms and anthropogenic polluted particles, with increasing PM10 mass concentrations, showed higher AOD values in the Yellow Sea region.  相似文献   

7.
One hundred workers carried personal air sampling equipment during three days to assess exposure to inhalable and respirable Mn. A novel four-step chemical fractionation procedure developed for the speciation of Mn in workroom aerosols was applied for selected aerosol filters. Blood and urine samples were analysed for Mn. The geometric mean (GM) concentrations of inhalable (n = 265) and respirable (n = 167) Mn determined in all filters were 254 microg m(-3) and 28 microg m(-3) respectively. Only 10.6% (95% CI 8.9-12.5) respirable Mn was found in the inhalable fraction when inhalable and respirable samples collected in parallel were considered (n = 153 pairs). There was a high correlation (Pearson's r = 0.70; p < 0.001) between respirable and inhalable Mn. The largest amounts of Mn in the inhalable aerosol fraction were found as Mn0 and Mn2+ (47.4%), whereas 28% was practically "insoluble". The associations between B-Mn and aerosol concentrations of Mn were weak, but an association was found between U-Mn and respirable Mn; Pearson's r being 0.38 between "soluble" respirable Mn and U-Mn. No significant association was found between the "insoluble" components (probably SiMn) and Mn in biological samples.  相似文献   

8.
Atmospheric aerosols were collected during the scientific expedition to Mt. Qomolangma (Everest) in May–June, 2005. The elemental concentrations of the aerosols were determined by inductively coupled plasma mass spectrometry. This yielded data for the concentration of 14 elements: Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb. The mean elemental concentrations were generally comparable with those from central Asia and the Arctic, while much higher than those from Antarctic. Size, morphology, and chemical composition of 900 individual aerosol particles were determined by scanning electron microscopy and energy-dispersive X-ray microanalysis. Based on morphology and elemental composition, the particles were clustered into eight groups: soot (8%), tar ball (3%), alumosilicates/silica (55%), calcium sulfate (16%), Ca/Mg carbonate (2%), Fe/Ti-rich particles (3%), Pb-rich particles (1%), and biological particles (12%). The sampling site, located at 6,520 m in the Himalayas, is particularly remote and located at high altitude. Nonetheless, high aerosol enrichment factors for copper, chromium, lead, nickel, vanadium, and zinc all suggest the influence of long-range transported pollution, while enrichment in calcium and the presence of alumino-silicates in individual particle analyses indicates a distinct mineral dust influence. The backward air mass trajectories showed that the northwestern part of India may contribute to the atmospheric aerosol in the central high Himalayas.  相似文献   

9.
Atmospheric pollutants from livestock operations influence air quality inside livestock buildings and the air exhausted from them. The climate that prevails inside the building affects human and animal health and welfare, as well as productivity, while emissions from the building contribute to environmental pollution. The aim of this study was to examine the variation of two climatic parameters (namely temperature and relative humidity) and the levels of particulate matter of different sizes (PM10-PM2.5-PM1), as well as the relationships between them, inside a typical Greek naturally ventilated livestock building that hosts mainly sheep. The concentration of particles was recorded during a 45-day period (27/11-10/1), while temperature and relative humidity were observed during an almost 1-year period. The analysis revealed that the variation of outdoor weather conditions significantly influenced the indoor environment, as temperature and relative humidity inside the building varied in accordance to the outside climate conditions. Temperature remained higher indoors than outdoors during the winter and extremely low values were not recorded inside the building. However, the tolerable relative humidity levels recommended by the International Commission of Agricultural Engineering (CIGR) were fulfilled only in 47% of the hours during the almost 1-year period that was examined. This fact indicates that although temperature was satisfactorily controlled, the control of relative humidity was deficient. The concentration of particulate matter was increased during the cold winter days due to poor ventilation. The maximum daily average value of PM10, PM2.5 and PM1 concentration equaled to 363, 61 and 30?μg/m(3) respectively. The concentration of the coarse particles was strongly influenced by the farming activities that were daily taking place in the building, the dust resuspension being considered as the dominant source. A significant part of the fine particles were secondary, which the production of could be attributed to an increase in relative humidity levels. It is concluded that measures have to be adopted in order to achieve sufficient ventilation and to reduce particulate matter levels.  相似文献   

10.
Aerosol particles with aerodynamic diameters between 0.18 and 10 microm were collected in the workroom air of two aluminium smelter potrooms with different production processes (Soderberg and Prebake processes). Size, morphology and chemical composition of more than 2000 individual particles were determined by high resolution scanning electron microscopy and energy-dispersive X-ray microanalysis. Based on chemical composition and morphology, particles were classified into different groups. Particle groups with a relative abundance above 1%(by number) include aluminium oxides, cryolite, aluminium oxides-cryolite mixtures, soot, silicates and sea salt. In both production halls, mixtures of aluminium oxides and cryolite are the dominant particle group. Many particles have fluoride-containing surface coatings or show agglomerations of nanometer-sized fluoride-containing particles on their surface. The phase composition of approximately 100 particles was studied by transmission electron microscopy. According to selected area electron diffraction, sodium beta-alumina (NaAl(11)O(17)) is the dominant aluminium oxide and cryolite (Na(3)AlF(6)) the only sodium aluminium fluoride present. Implications of our findings for assessment of adverse health effects are discussed.  相似文献   

11.
武汉地区沙尘天气气溶胶粒径分布特性研究   总被引:1,自引:0,他引:1  
通过利用湖北省大气复合污染自动监控预警中心的振荡天平法颗粒物监测仪、光散射法气溶胶粒径谱仪,对武汉地区一次典型沙尘天气过程中记录的不同粒径气溶胶颗粒数量浓度、相对质量浓度进行研究。结果表明,在武汉地区沙尘天气过程中,粗颗粒显著增多,而细颗粒显著减少,这与部分研究发现的沙尘天气过程中粗颗粒与细颗粒共同显著增多的结论有所不同。粒径谱仪分析显示,大于PM5颗粒的增多对粗颗粒浓度增加有显著贡献,而小于PM0.5颗粒的减少则对细颗粒浓度降低有主要贡献,这可能是武汉地区沙尘天气过程颗粒物的变化特点。  相似文献   

12.
Our laboratory investigation aimed at assessing to what extent suspended particles could adsorb formaldehyde, allowing it, when inhaled, to penetrate deeper into the lung. We used two types of pure soot, N-220 and N-660 (the former being a highly active oil furnace soot with smaller particles and a larger surface area than the latter), because of their chemical inactivity and the adsorptive properties. The results obtained in experimental conditions showed that soot particles could bind 2.3 to 50.2% of formaldehyde, depending on the particle size, relative humidity, amount of particles and the duration of the contact. The recovery of formaldehyde from the particles was also tested. Further investigation is planned under realistic conditions.  相似文献   

13.
The exposure characterisation described in this paper for 135 copper refinery workers (45 females, 90 males) focuses on the concentrations of copper, nickel and other trace elements in the inhalable aerosol fractions, as well as in the water-soluble and water-insoluble subfractions. Some information is also provided on the thoracic and respirable aerosol fractions. Further, results are presented for volatile hydrides of arsenic and selenium released in the copper purification steps of the electrorefining process. For the pyrometallurgical operations, a comparison of the geometric means for the inhalable aerosol fraction indicated that water-soluble copper levels were on average 19-fold higher compared to nickel (p < 0.001) and a significant association was evident between them (r = 0.87, p < 0.001); for the insoluble subfraction, the copper : nickel ratio was 12.5 (p < 0.001) and the inter-element correlation had r = 0.98 and p < 0.001. Although for the electrorefinery workers the relative inhalable concentrations of copper and nickel were not significantly different (p > 0.05), the corresponding inter-element associations were: slope of 7.7, r= 0.54, p < or =0.001 for the water-soluble subfraction and slope of 1.3, r = 0.71 and p < or =0.001 for the water-insoluble subfraction. On average, a good proportion of the inhalable copper and nickel were found in the thoracic (40%) and respirable (20%) aerosol fractions. Cobalt air concentrations were generally low with geometric means and 95% confidence intervals of 3.1 (2.4-4.2)microg m(-3) (pyrometallurgical workers) and 0.3 (0.4-0.5) microg m(-3)(electrorefinery workers). Similarly, the maximum concentrations of cadmium and lead were low, respectively 4 and 25 microg m(-3). Of the hydrides, tellurium and antimony could not be detected, but for the arsenic (arsine) and selenium hydrides measurable exposure occurred for almost all electrorefinery workers, although the levels were generally low at 0.2 microg m(-3).  相似文献   

14.
利用位于北京以及河北香河的两台地基Mie散射激光雷达、星载激光雷达、太阳光度计以及颗粒物监测仪等一系列仪器对发生在2008年5月底的一次沙尘事件进行立体监测并分析.结果表明,这起较严重的沙尘是由蒙古国输送而来,影响范围很广,持续时间较长,有三次明显的峰值,对应三次沙尘的来袭;沙尘的每次来袭都对应有先升温后降温的现象,并伴随有相对湿度的急剧下降;沙尘入侵前北京香河两地以细粒子为主,入侵后代之以粗粒子为主.  相似文献   

15.
Size, morphology and chemical composition of individual aerosol particles collected in a nickel refinery were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis (EDX). The phase composition was determined by selected area electron diffraction and EDX in a transmission electron microscope. Most particles are heterogeneous on a nanometer scale and consist of various phases. Nickel phases observed in the roasting and anode casting departments include metallic nickel, bunsenite (NiO), trevorite (Ni,Cu)Fe2O4, heazlewoodite Ni3S2, godlevskite (Ni,Cu)9S8, orthorhombic NiSO4 and an amorphous Ni,Cu.Al,Pb sulfate of variable composition. Additional phases encountered include corundum (Al2O3), murdochite (PbCu6O8), hexagonal Na2SO4, anhydrite (CaSO4), graphite (C) and amorphous carbon. The implications of the occurrence of the different Ni phases and their nanometer size for the study of adverse health effects are explored.  相似文献   

16.
Urinary copper (Cu), nickel (Ni) and cobalt (Co) concentrations were determined for 127 Cu refinery workers (40 females, 87 males), with values of the 95% upper confidence interval of the geometric mean in nmol per mmol creatinine of 89 (Ni), 42 (Cu) and 3.4 (Co) for electrorefinery workers. In the pyrometallurgical departments, the corresponding concentrations were 37 (Ni), 99 (Cu) and 11 (Co). Female workers had higher Co urinary concentrations than males (p< or = 0.05) while no gender difference was observed for Cu and Ni. Inter-elemental correlations were moderate to weak. Based on the inhalable aerosol levels reported previously for the same workers, the observed urinary Cu concentrations were considerably lower than expected, relative to Co and Ni. This is interpreted in terms of the current understanding of Cu homeostasis.  相似文献   

17.
The solvation parameter model is used to characterize interactions responsible for adsorption at the gas-water interface for bulk water at 15 and 25 degrees C, snow at -6.8 degrees C, mineral-supported water films (alumina, calcium carbonate and quartz) at 15 degrees C, and dry soil at 15 degrees C. The mineral-supported water films and dry soil adsorption data are modeled at different relative humidities in the range 40-99%. The models produce satisfactory results with standard errors of the estimate of 0.12 to 0.17 for regression of the model predicted adsorption equilibrium constants against the experimental values (range for equilibrium constants -2 to -7 log units). The water surface is polar with a significant capacity for dipole-type and hydrogen-bonding interactions. In addition, it is strongly electron lone pair repulsive. Dispersion interactions favor adsorption at the water surface. Mineral-supported water films at relative humidities greater than 40% demonstrate adsorption properties similar to bulk water. The adsorption characteristics, however, depend on the relative humidity and the nature of the support. In the case of dry soil the adsorption properties at different relative humidities cannot simply be explained by adsorption of a water film covering the soil surface and the changes in adsorption characteristics with relative humidity are more complex than the mineral-supported water films.  相似文献   

18.
Personal aerosol samplers are widely used to monitor human exposure to airborne materials. For bioaerosols, interest is growing in analyzing samples using molecular and immunological techniques. This paper presents a personal sampler that uses a two-stage cyclone to collect bioaerosols into disposable 1.5 ml Eppendorf-type microcentrifuge tubes. Samples can be processed in the tubes for polymerase chain reaction (PCR) or immunoassays, and the use of multiple stages fractionates aerosol particles by aerodynamic diameter. The sampler was tested using fluorescent microspheres and aerosolized fungal spores. The sampler had first and second stage cut-off diameters of 2.6 microm and 1.6 microm at 2 l min(-1)(geometric standard deviation, GSD = 1.45 and 1.75), and 1.8 microm and 1 microm at 3.5 l min(-1)(GSD = 1.42 and 1.55). The sampler aspiration efficiency was >or=98% at both flow rates for particles with aerodynamic diameters of 3.1 microm or less. For 6.2 microm particles, the aspiration efficiency was 89% at 2 l min(-1) and 96% at 3.5 l min(-1). At 3.5 l min(-1), the sampler collected 92% of aerosolized Aspergillus versicolor and Penicillium chrysogenum spores inside the two microcentrifuge tubes, with less than 0.4% of the spores collecting on the back-up filter. The design and techniques given here are suitable for personal bioaerosol sampling, and could also be adapted to design larger aerosol samplers for longer-term atmospheric and indoor air quality sampling.  相似文献   

19.
采用单颗粒气溶胶飞行时间质谱仪(Single Particle Aerosol Mass Spectrometer,SPAMS)对西安市大气矿尘颗粒物进行连续12 d在线分析,共采集到107 425个同时含有正负质谱信息的矿尘颗粒,矿尘颗粒物占PM_(2.5)样本数的8.44%。结果表明,矿尘颗粒物的正离子碎片成分以Na~+、K~+、Al~+、Ca~+、CaO~+、Fe~+为主,同时还含有Pb~+等,负离子碎片成分以NO~-_2和NO~-_3为主,另外还含有HSO~-_4、SiO~-_3、HSiO~-_3、H(NO_3)~-_2等。在西安市大气细颗粒物中,矿尘颗粒物中贡献较大的几类(如含钙、含铁、铁氧颗粒物等)大多是老化的成分。将观测阶段采集到的矿尘颗粒纳入本地污染源谱进行来源分析,其主要来源为扬尘源、工业源、燃煤源和汽车尾气源等。  相似文献   

20.
The size, morphology and chemical composition of 8405 particles on moss surfaces (Hylocomium splendens) was investigated by scanning electron microscopy and energy-dispersive X-ray microanalysis. Two moss samples from three locations in Southern Norway (Alg?rd, Birkeland, Neslandsvatn) and two sampling years (1977 and 2005) each were selected leading to a total of 12 samples investigated. At all three locations, particle deposition decreased substantially with time. The major particle groups encountered include silicates, iron-rich silicates, metal oxides/hydroxides, iron oxides/hydroxides, carbonates, carbon-rich particles, silicate fly ashes, iron-rich silicate fly ashes, and iron oxide fly ashes. Between 1977 and 2005, the relative number abundance of the three fly ash groups decreased substantially from approximately 30-60% to 10-18% for the small particles (equivalent projected area diameter <1 microm), and from 10-35% to 2-9% for large particles with diameters ≥1 microm. This decrease of fly ash particles with time was overlooked in previous papers on atmospheric input of pollutants into ecosystems in Southern Norway. In general, the presence of fly ash particles is ignored in most source apportionment studies based on bulk chemical analysis. Consequently, the geogenic component (crustal component) derived from principal component analysis is overestimated systematically, as it has a similar chemical composition as the fly ash particles. The high abundance of fly ashes demonstrates the need to complement source apportionment based on bulk chemistry by scanning electron microscopy in order to avoid misclassification of this important anthropogenic aerosol component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号