首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
pH对高氨氮渗滤液短程生物脱氮反硝化过程动力学的影响   总被引:6,自引:2,他引:4  
为考察实际高氨氮垃圾渗滤液短程生物脱氮过程pH对以NO2--N为电子受体反硝化动力学的影响,本研究采用缺氧/厌氧UASB-SBR生化系统处理实际高氨氮垃圾渗滤液,在SBR系统实现稳定短程生物脱氮(120d运行)的基础上,取SBR反应器内的污泥进行不同NO2--N浓度(5、10、20、40、60、80和100mg·L-1)和恒定pH梯度(6.5、7.0、8.0和8.5)下的反硝化批次试验,基于建立的反硝化动力学方程,确定不同pH条件下以NO2--N为电子受体的反硝化动力学常数.试验结果表明,反硝化菌的还原活性受pH影响较大,pH6.5、7.0和8.5时的最大比反硝化速率(k)分别为pH8.0时的49%、61%和63%;4种pH条件下,NO2--N比反硝化速率与其初始浓度均符合Monod方程,然而不同pH下Monod方程曲线一级反应部分的长短不同,由此导致半饱合常数(Ks)和最大比反硝化速率(k)差异较大,pH8.0下Ks和k最大,分别为15.8mg·L-1和0.435g.g-1.d-1.  相似文献   

2.
为探究乙酸钠作为碳源时,不同污泥源外源短程反硝化过程中亚硝酸盐积累特性,采用1号和2号SBR分别接种某污水处理厂二沉池和同步硝化反硝化除磷系统剩余污泥,通过合理控制初始硝酸盐浓度和缺氧时间,实现了短程反硝化的启动,并考察了其在不同初始COD和NO3--N浓度条件下的碳、氮去除特性。试验结果表明:以乙酸钠为碳源,1号和2号SBR可分别在21d和20d实现短程反硝化的成功启动,且其NO2--N积累量和亚硝酸盐积累率(NAR)均维持在较高水平,分别为12.61mg·L-1、79.76%和13.85mg·L-1、87.60%。当2号SBR初始NO3--N浓度为20mg·L-1,且初始COD浓度由60mg·L-1升高至140mg·L-1时,系统实现最高NO2--N积累时间可由160min逐渐缩短至6min,同时NO3--N比反硝化速率(以VSS计)由3.84mg·(g·h)-1增加至7.35mg·(g·h)-1,初始COD浓度的提高有利于实现短程反硝化过程NO2--N积累。2号SBR初始COD浓度为100mg·L-1,当初始NO3--N浓度由20mg·L-1增加至30mg·L-1时,系统NAR均维持在90%以上,最高可达100%(NO3--N初始浓度为25mg·L-1);当初始NO3--N浓度≥35mg·L-1时,系统COD不足导致NO3--N不能被完全还原为NO2--N。此外,在不同初始COD浓度(80、100、120mg·L-1)和NO3--N浓度(20、25、30、40mg·L-1)条件下,2号SBR的脱氮除碳和短程反硝化性能均优于1号SBR。  相似文献   

3.
颗粒粒径与数量对硝化与反硝化过程的影响   总被引:1,自引:0,他引:1  
以实验为基础,建立了一个基于多底物的多种微生物生长、维持和衰减过程的好氧硝化颗粒SBR反应器一维动力学模型,分析了颗粒粒径及数量对硝化、反硝化等过程的影响.研究发现,在相同生物量条件下,氨氮的消耗随颗粒的数量增加而增加,表明氨氮的消耗主要与NH4+-N和颗粒接触表面有关.同时,系统中所产生的NO2--N及NO3--N与颗粒数量和粒径有密切关系,而在NH4+-N不足时才只与数量有关,表明DO对颗粒的渗透决定NO2--N及NO3--N的产生.就反硝化过程而言,当粒径>1 000μm时反硝化会随粒径的增加而加强,而小于该值时,虽然反硝化也会发生但与颗粒粒径关系不大,表明颗粒粒径>1 000μm时粒径对DO的扩散限制才会明显从而加强反硝化过程.  相似文献   

4.
研究了连续流复三维电极-生物膜反应器在不同电流、温度和pH条件下的反硝化性能.结果表明,在电流从0mA增加至100mA的过程中,NO3--N去除率随电流增大而升高;电流为100mA时NO3--N去除率最高,达到了73.8%,出水NO3--N浓度为8.27mg.L-1;电流高于100mA时,NO3--N去除率略有下降.电流从0mA增加至150mA的过程中,NO2--N积累量先增加后减少;电流为60mA时NO2--N的积累最为严重.温度为31~35℃时,反硝化效果较好,出水NO3--N浓度低于10mg.L-1;温度为35℃时,NO3--N去除率最高,达到了85.5%.pH值为7.2~8.2时,反硝化效果较为理想,出水NO3--N浓度在10mg.L-1以下,NO2--N浓度低于1mg.L-1.该反应器具有较好的pH缓冲性能,进水pH从5.5上升至9.0的过程中,其出水pH可维持在7.6~8.2,NO3--N去除率在59.6%~80.2%.此外,电流、温度和进水pH还对氨氮的生成量和总磷的去除产生明显影响.通过复三维电极-生物膜反应器与纯电化学反应器的对比试验,对氨氮产生和总磷去除的可能原因进行了分析和探讨.  相似文献   

5.
为考察实际高氨氮垃圾渗滤液短程生物脱氮过程DO对以NO2--N为电子受体反硝化动力学的影响,本研究采用缺氧/厌氧UASB-SBR生化系统处理实际高氨氮垃圾渗滤液,在SBR系统实现稳短程生物脱氮(120d运行)的基础上,取SBR反应器内的污泥进行pH8.0条件下不同DO浓度梯度反硝化批次试验,从而确定DO对以NO2--N为电子受体的溶解氧抑制系数(K′O)的影响.试验结果表明,DO对反硝菌的NO2--N还原活性具有明显影响,与缺氧状态相比,DO为0.4和0.6mg·L-1时,其还原活性分别降低了49.0%和16.3%左右.DO与NO2--N还原速率两者呈指数负相关.DO对NO2--N为电子受体K′O具有显著影响,存在明显的分段现象,每一DO范围内,K′O恒定.  相似文献   

6.
张静蓉  王淑莹  尚会来  彭永臻 《环境科学》2009,30(12):3624-3629
采用SBR反应器考察了短程硝化反硝化和同步硝化反硝化脱氮过程中N_2O的释放.通过实时控制策略实现了短程硝化反硝化生物脱氮,亚硝化率可维持在90%以上.在溶解氧水平为0.5、 1.0、 1.5和2.0 mg/L条件下,考察N_2O的释放和亚硝化率的变化情况.结果表明,溶解氧1.5 mg/L时最有利于维持稳定的亚硝化率,同时N_2O逸出量最小,每去除1 g氨氮释放N_2O 0.06 g;在碳纤维填料SBR反应器中,通过维持较低溶解氧水平和分段投加碳源的运行方式成功实现了同步硝化反硝化,同步硝化反硝化率在79%以上.在溶解氧水平为0.2、 0.4、 1.0和1.5 mg/L时,考察N_2O的逸出情况.结果表明,溶解氧在1.0 mg/L时最有利于控制N2O的释放,每去除1g氨氮释放N2O 0.021 g,其N_2O释放量仅为短程硝化反硝化的1/3.  相似文献   

7.
影响亚硝化过程和硝化过程因素的动力学模型分析   总被引:6,自引:0,他引:6  
用数学模型模拟了1L初始氨氮浓度60 mg·L-1且无其它氮源的污水完全混合批式硝化过程,并分别计算了溶解氧、温度、微生物群落对硝化过程的影响.模拟结果表明,DO浓度降低时各物质转化速度也降低,DO=0.5 mg·L-1和氨氧化细菌占优势时NO2--N的转化率可高于50%,因而低浓度溶解氧有利于NO2--N积累;不同温度的氨氧化细菌和亚硝酸氧化细菌代谢速度不同,温度升高对氨氧化细菌的促进作用更大,亚硝酸盐氮浓度最大值随温度升高而增大,温度高于30℃有利于NO2--N的积累;此外硝化动力学方程对底物最大比氧化速率的灵敏度要高于亲和常数的灵敏度,但二者均低于微生物构成对模拟结果的影响,溶解氧和温度对硝化过程的影响也均不如微生物构成显著,因此要确保亚硝化过程的实现,必须保持系统中氨氧化细菌占优势.  相似文献   

8.
SBR短程脱氮系统中亚硝酸盐积累对生物除磷的影响   总被引:3,自引:1,他引:2  
采用SBR工艺处理实际生活污水,通过控制好氧段的DO浓度及曝气时间,实现了短程硝化反硝化,并考察了短程硝化引起的亚硝酸盐积累对生物除磷系统的影响.结果表明,在没有补充外碳源的情况下,好氧阶段NO2--N的积累低于10 mg·L-1时,聚磷菌的吸磷及放磷能力没有受到影响,好氧出水磷浓度基本维持在1 mg·L-1以下;当N...  相似文献   

9.
取自强化A/O工艺处理合成氨废水中试装置的活性污泥,在pH、碳源和温度均不为限制性因素条件下,短程反硝化和全程反硝化均为零级反应.结果表明,相对于全程反硝化,短程反硝化可以节约14.1%的碳源和55.7%的反硝化时间;初始NO2--N为36.82 mg.L-1时反硝化最快,比反硝化速率(以NO2--N/VSS计)为0.509 g.(g.d)-1;pH为7.5时反硝化速率最快,实际运行中应避免缺氧区pH〉9;选择性增殖的反硝化菌对甲醇和乙醇形成了良好的适应性,却对葡萄糖和乙酸等其它低分子易降解有机物产生了不适应性.  相似文献   

10.
在SBR短程硝化系统处理高氨氮污水过程中,探讨了温度、pH和DO对短程硝化的影响。实验发现,温度升高可以促进短程硝化实现,当温度在30℃时,短程硝化系统的稳定性能良好,NH4+-N的去除率和NO2--N的积累率均达到了最佳值。适宜的pH有益于NH4+-N的去除和NO2--N的积累,当pH为8.5时,系统的NO2--N积累率较好。DO浓度会影响系统中AOB和NOB的生长平衡,当DO处于0.7~0.9mg/L时,系统内AOB的生长形成优势,NO2--N积累率最高,短程硝化效果最佳。  相似文献   

11.
在冬季低温(10.6℃)连续好氧-缺氧以及全泥龄的运行条件下,挂膜成熟后序批式生物膜工艺(SBBR)、投加填料SBR工艺和传统活性污泥法(CAS)工艺的污泥产率分别为0.171kgMLSS/kgCODremoved、0.207kgMLSS/kgCODremoved和0.315kgMLSS/kgCODremoved。三个工艺中SBBR工艺污水处理效果最佳,其对COD、NH4+-N的去除效果分别达到63.94%和85.36%。在冬季运行条件下,试验第10天和第25天在两种SBBR工艺中先后有大量轮虫和线虫等后生动物的滋生,导致出水中总磷(TP)的明显释放,后生动物的滋生有助于污泥的沉降性能的改善,在SBBR中后生动物的滋生有助于提高系统的硝化作用。  相似文献   

12.
SBBR工艺的现状与发展   总被引:9,自引:0,他引:9  
黄俊  邵林广 《重庆环境科学》2003,25(6):46-48,51
序批式生物膜反应器(SBBR)是目前正在研究、应用的一种污水生物处理新工艺,它是在SBR的基础上发展起来的,既保留了SBR的诸多优点,又有不同于SBR的特点。由于SBBR工艺的脱氮除磷效果好,自动化程度高,运行管理简单,基建费用低,运行费用省,推广到城市污水处理中,必将产生良好的环境效益和社会效益,其应用前景十分广阔。  相似文献   

13.
俞红燕  姚磊  叶正芳 《环境科学》2009,30(9):2661-2666
以活性污泥为接种污泥,葡萄糖为共代谢基质,通过控制有机负荷、污泥沉降时间,在序批式反应器(sequencing batchreactor,SBR)内培养得到具有邻苯二甲酸二甲酯(dimethyl phthalate,DMP)降解性能的好氧颗粒污泥.结果表明,好氧颗粒污泥对DMP具有很好的去除效果,驯化75 d后,DMP与COD去除率分别达到92.3%与90.6%.好氧颗粒污泥降解DMP的中间产物为邻苯二甲酸单酯(monomethyl phthalate,MMP)和邻苯二甲酸(phthalic acid,PA).动力学研究表明,DMP降解过程符合haldane抑制模型,Vmax为643.2 mg.(g.h)-1,Ks和Ki分别171.0 mg.L-1和337.5 mg.L-1.电镜观察表明,颗粒污泥表面粗糙,微生物相丰富,含有丝状菌、球菌和短杆菌.  相似文献   

14.
研究了SBR在不同pH值条件下处理模拟城市生活污水中的脱氮效果.结果表明,在曝气时间为4 h,沉淀静置时间为4h,进水COD浓度为250~300 mg.L-1,进水NH4+-N浓度30~40 mg.L-1时,R2(pH为8.0±0.2)出水氨氮浓度降到0~1 mg.L-1同时有大量的硝态氮生成,出水中硝态氮(NO3--N+NO2--N)的浓度基本在8~10 mg.L-1之间,TIN(TIN=NH4+-N+NO3--N+NO2--N)的去除率在70%左右.R1(pH为7.0±0.2)出水氨氮浓度降到0~5 mg.L-1,而硝态氮浓度在整个过程中基本保持不变且含量极低(1~2 mg.L-1),污泥中总氮含量较高且4 h好氧阶段呈先下降后上升的趋势,典型周期好氧开始时污泥中总氮含量为214 mg.g-1,好氧1 h时含量为210 mg.g-1,好氧结束时含量为215 mg.g-1,水相中TIN的去除率达到85%以上.说明在本研究特殊的工艺条件下,SBR能实现较高的生物脱氮效果,但氮的去除并不是通过传统的硝化反硝化途径实现,而是通过排除微生物超量吸收的富氮污泥来实现.  相似文献   

15.
SBR系统中好氧颗粒污泥的培养及脱氮除硫研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用SBR反应器进行了好氧颗粒污泥的培养和脱氮除硫研究.结果表明,以厌氧颗粒污泥为种泥,通过控制运行条件,在30d内可培养出好氧颗粒污泥.好氧颗粒污泥粒径以1~2mm为主, SVI为30~40mL/g,微生物组成以短杆菌为主,外部包裹大量丝状菌.当COD和NH4+-N负荷分别保持在1.65kg/(m3·d)和0.17kg/(m3·d),硫化物负荷从0.15kg/(m3·d)逐步提高到0.90kg/(m3·d)时,好氧颗粒污泥对硫化物、COD和NH4+-N的去除率分别>99%、>80%和>98%.在高硫化物浓度下,反应器仍然表现出良好的脱氮效果,可能是由好氧颗粒污泥的层状结构和硫化物能先于NH4+-N快速氧化的特点决定的.  相似文献   

16.
啤酒废水同步脱氮除磷工艺启动研究   总被引:1,自引:1,他引:0  
为了将短程硝化反硝化与A/O法除磷同时应用于SBR工艺处理啤酒废水,通过改变序批式反应器(SBR)工艺运行方式,使活性污泥依次经历厌氧、好氧、缺氧3个阶段,控制ρ(MLSS)=4 700 mg/L、pH=7.5~8.0、DO=0.3~0.5 mg/L(好氧阶段)。反应器内短程硝化反硝化同步除磷效果明显,氨氮去除率大于90%,亚硝酸盐积累率大于85%,磷去除率大于98%。试验结果表明短程硝化反硝化与A/O法除磷可同时应用于SBR工艺处理啤酒废水。  相似文献   

17.
在序批式活性污泥反应器(SBR)中加入不同类型填料,形成序批式生物膜反应器(SBBR)并进行平行比选试验,考察通过投加生物填料对河南某味精生产企业原有SBR工艺进行升级改造的技术可行性.试验周期为38 d,期间对3组反应器内的SVI,pH,COD,氨氮及总氮浓度进行监测.试验结果表明:投加了悬浮球的SBBR反应器内的生...  相似文献   

18.
二甲基乙酰胺湿纺腈纶废水是含有难降解物质的化工废水,碳氮比低,水质波动大。采用序批式生物膜反应器对二甲基乙酰胺湿纺腈纶废水进行实验研究,结果表明:在工艺参数为曝气时间3 h,溶解氧4.5~5.5 mg/L,补充无机碳源碳酸氢钠0.5 mg/L,缺氧停留时间2 h的工况下,COD去处理率为75%,BOD为98%,TOC为70%,NH4+-N为94%,TN为80%,DMAC达到99%。  相似文献   

19.
序批式膜反应器同步硝化和反硝化的特性   总被引:5,自引:0,他引:5       下载免费PDF全文
为提高污水生物脱氮处理的效率和减少外加碳源,研究了序批式膜反应器(SBBR)在有氧情况下处理生活污水中同步硝化和反硝化的特性.试验表明,原水TN为80~110mg/L和溶解氧浓度为0.8~4.0mg/L情况下,出水TN小于15mg/L,NH3-N去除率达100%,TN去除率54%~77%,NH3-N容积负荷率为47~94mg/(L·d),TN容积负荷率为56~113mg/(L·d).TN的变化规律为在NH3-N降到零或最小之前,TN持续降低之后,TN有短时的上升后再缓慢降低.在较大的溶解氧浓度范围内,SBBR具有同步硝化和反硝化的能力,建议将NH3-N降解到零或最小值的时刻,作为同步硝化和反硝化的结束点.  相似文献   

20.
SBBR技术处理有机农药废水的试验研究   总被引:1,自引:0,他引:1  
选用盾形填料,利用序批式生物膜反应器(SBBR)对有机农药废水进行试验研究,最终将工艺参数确定为:厌氧2.0h,好氧曝气4.0h,曝气量为0.12~0.15m3/h,DO为4.9~7.5mg/L,pH值为7.0~8.0。处理效果为:COD、BOD5、TP的平均去除率分别达到85%、90%、93%,出水水质达到GB8978-1996《污水综合排放标准》二级标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号