共查询到20条相似文献,搜索用时 0 毫秒
1.
Application of water quality indices and analysis of the surface water quality monitoring network in semiarid North-Central Chile 总被引:4,自引:0,他引:4
Espejo L Kretschmer N Oyarzún J Meza F Núñez J Maturana H Soto G Oyarzo P Garrido M Suckel F Amezaga J Oyarzún R 《Environmental monitoring and assessment》2012,184(9):5571-5588
Surface water quality has increasing importance worldwide and is particularly relevant in the semiarid North-Central Chile, where agriculture and mining activities are imposing heavy pressure on limited water resources. The current study presents the application of a water quality index in four watersheds of the 29°-33°S realm for the period 1999-2008, based on the Canadian Council of Ministers for the Environment approach and the Chilean regulation for irrigation water quality. In addition, two modifications to the index are tested and a comprehensive characterization of the existing monitoring network is performed through cluster analysis. The basins studied show fairly good water quality in the overall, specially the Limarí basin. On the other hand, the lower index values were obtained for the headwaters of Elqui, associated with the El Indio mining district. The first modification of the indicator (i.e., to consider parameters differentially according to their effect on human health or the environment) did not produce major differences with respect to the original index, given the generally good water quality. The second modification (i.e., to consider as threshold values the more restrictive figures derived from a set of regulations) yielded important differences in the indicator values. Finally, an adequate characterization of the monitoring network was obtained. The results presented spatial coherence and the information can be used as a basis for the optimization of the monitoring network if required. 相似文献
2.
Pushpa Tuppad Chinnasamy Santhi Raghavan Srinivasan 《Environmental monitoring and assessment》2010,170(1-4):315-329
Observed water quality data obtained from eight stream monitoring locations within Richland–Chambers Watershed in north central Texas were analyzed for trends using box-and-whisker plots, exceedance probability plots, and linear and Mann–Kendall statistical methods. Total suspended solids decreased at seven out of eight stations, and at two of these stations, the decrease was significant. Mixed results were obtained for nitrogen across the stations. A nonsignificant and significant increase in nitrite plus nitrate nitrogen (nitrite + nitrate N) was noticed in two stations each, whereas at the other four stations showed nonsignificant decrease. The results of organic nitrogen (Org N) was similar to nitrite + nitrate N except that the two stations that showed significant increase in nitrite + nitrate N showed nonsignificant decrease in Org N. Mixed results were also noticed for orthophosphorus (Ortho P) including nonsignificant decrease at two stations, significant decrease and increase at one station each, and nonsignificant increase in four stations. In general, total phosphorus (TP) decreased at all stations, significantly at some, except one station where it increased significantly. Decreasing trends in sediment, Org N, Ortho P, and TP were likely related to implementation of best management practices (BMPs). Increasing trends in dissolved constituents including Ortho P and nitrite + nitrate N were likely due to increased surface residue as a result of some BMPs such as conservation tillage. 相似文献
3.
Assessment of spatial distribution of soil loss over the upper basin of Miyun reservoir in China based on RS and GIS techniques 总被引:2,自引:0,他引:2
Chen T Niu RQ Wang Y Li PX Zhang LP Du B 《Environmental monitoring and assessment》2011,179(1-4):605-617
Soil conservation planning often requires estimates of the spatial distribution of soil erosion at a catchment or regional scale. This paper applied the Revised Universal Soil Loss Equation (RUSLE) to investigate the spatial distribution of annual soil loss over the upper basin of Miyun reservoir in China. Among the soil erosion factors, which are rainfall erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), vegetation cover (C), and support practice factor (P), the vegetative cover or C factor, which represents the effects of vegetation canopy and ground covers in reducing soil loss, has been one of the most difficult to estimate over broad geographic areas. In this paper, the C factor was estimated based on back propagation neural network and the results were compared with the values measured in the field. The correlation coefficient (r) obtained was 0.929. Then the C factor and the other factors were used as the input to RUSLE model. By integrating the six factor maps in geographical information system (GIS) through pixel-based computing, the spatial distribution of soil loss over the upper basin of Miyun reservoir was obtained. The results showed that the annual average soil loss for the upper basin of Miyun reservoir was 9.86 t ha(-1) ya(-1) in 2005, and the area of 46.61 km(2) (0.3%) experiences extremely severe erosion risk, which needs suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes was 66.9% very low, 21.89% low, 6.18% moderate, 2.89% severe, and 1.84% very severe. Thus, by using RUSLE in a GIS environment, the spatial distribution of water erosion can be obtained and the regions which susceptible to water erosion and need immediate soil conservation planning and application over the upper watershed of Miyun reservoir in China can be identified. 相似文献
4.
Roy E. Kwiatkowski 《Environmental monitoring and assessment》1991,17(2-3):253-271
The concept that a few well chosen, strategically placed, water quality stations can provide valuable scientific information to water managers is common to many countries. Historically within Canada, water quality regional networks (Great Lakes network, Prairie Provinces Water Board network, Long Range Transport of Airborne Pollutants network, etc.) have been successfully operating for many years. This paper will describe the difficulties associated with developing a national water quality network for a country the size of Canada. In particular, it will describe some of the statistical tools presently being used in regional networks which are suitable for a national network, and discuss the need to develop new statistical tools for environmental monitoring in the 1990's. 相似文献
5.
Bizuneh Woldeab Abebe Beyene Argaw Ambelu Ishi Buffam Seid Tiku Mereta 《Environmental monitoring and assessment》2018,190(3):163
This research investigated the spatiotemporal variation of water quality in the Gilgel Gibe reservoir, Ethiopia, using physicochemical water quality parameters. Nonparametric tests and multivariate statistical techniques were used to evaluate data sets measured during dry and rainy seasons. Electrical conductivity (EC), pH, biochemical oxygen demand (BOD5), total phosphorus (TP), total nitrogen (TN), nitrate (NO3?), total dissolved solids (TDSs), and total suspended solids (TSSs) were all significantly different among seasons (Mann-Whitney U test, p?<?0.01). In addition, principal component analysis distinguished dry season samples from wet season samples. The dry season was positively associated with EC, pH, TP, TN, NO3?, TDS, and TSS and negatively associated with BOD5. The wet season was in contrast associated with high values of turbidity, soluble reactive phosphorus (SRP), water temperature, and dissolved oxygen (DO). Within the reservoir, spatial variation was observed for some of the water quality parameters, with significant difference at p?=?<?0.05. Overall, high nutrient concentrations suggest eutrophic conditions, likely due to high nutrient loading from the watershed. Levels of TSS, attributed to inputs from tributaries, have been excessive enough to inhibit light penetration and thus have a considerable impact on the aquatic food web. Our findings indicate that the reservoir is at high risk of eutrophication and siltation, and hence, urgent action should target the planning and implementation of integrated watershed management for this and similar reservoirs in the region. 相似文献
6.
A proper water quality monitoring design is required in a watershed, particularly in a water resource protected area. As numerous factors can influence the water quality monitoring design, this study applies multiple criteria analysis to evaluate the suitability of the water quality monitoring design in the Taipei Water Resource Domain (TWRD) in northern Taiwan. Seven criteria, which comprise percentage of farmland area, percentage of built-up area, amount of non-point source pollution, green cover ratio, landslide area ratio, ratio of over-utilization on hillsides, and density of water quality monitoring stations, are selected in the multiple criteria analysis. The criteria are normalized and weighted. The weighted method is applied to score the subbasins. The density of water quality stations needs to be increased in priority in the subbasins with a higher score. The fuzzy theory is utilized to prioritize the need for a higher density of water quality monitoring stations. The results show that the need for more water quality stations in subbasin 2 in the Bei-Shih Creek Basin is much higher than those in the other subbasins. Furthermore, the existing water quality station in subbasin 2 requires maintenance. It is recommended that new water quality stations be built in subbasin 2. 相似文献
7.
Anttila S Ketola M Vakkilainen K Kairesalo T 《Journal of environmental monitoring : JEM》2012,14(2):589-595
The effectiveness of different monitoring methods in detecting temporal changes in water quality depends on the achievable sampling intervals, and how these relate to the extent of temporal variation. However, water quality sampling frequencies are rarely adjusted to the actual variation of the monitoring area. Manual sampling, for example, is often limited by the level of funding and not by the optimal timing to take samples. Restrictions in monitoring methods therefore often determine their ability to estimate the true mean and variance values for a certain time period or season. Consequently, we estimated how different sampling intervals determine the mean and standard deviation in a specific monitoring area by using high frequency data from in situ automated monitoring stations. Raw fluorescence measurements of chlorophyll a for three automated monitoring stations were calibrated by using phycocyanin fluorescence measurements and chlorophyll a analyzed from manual water samples in a laboratory. A moving block bootstrap simulation was then used to estimate the standard errors of the mean and standard deviations for different sample sizes. Our results showed that in a temperate, meso-eutrophic lake, relatively high errors in seasonal statistics can be expected from monthly sampling. Moreover, weekly sampling yielded relatively small accuracy benefits compared to a fortnightly sampling. The presented method for temporal representation analysis can be used as a tool in sampling design by adjusting the sampling interval to suit the actual temporal variation in the monitoring area, in addition to being used for estimating the usefulness of previously collected data. 相似文献
8.
A total of 357 water samples were collected from a public beach in northern Taiwan during beach season, and the densities of enterococci were analyzed by Enterolert methods. The mean enterococci level was 356 MPN/100 ml and ranged from <10 to 2,005 MPN/100 ml, which was classified as high contamination level according to the WHO water quality guideline (95 percentile >1,000 MPN/100 ml). Most of the deteriorated water quality conditions occurred during rainfall. By excluding data from the rain days, the overall beach water quality would be considered in the moderate contamination level (95 percentile 200-1,000 MPN/100 ml). Among the selected microbiological parameters tested, the densities of total coliforms and enterococci exhibited the highest correlation (r = 0.449, p = 0.009), followed by the concentrations of total coliforms and fecal coliforms (r = 0.403, p = 0.02). Nonetheless, no significant correlation was found between enterococci and fecal coliform levels (r = 0.197, p = 0.271). 相似文献
9.
Martin T. Schultz Mitchell J. Small Paul S. Fischbeck R. Scott Farrow 《Environmental Modeling and Assessment》2006,11(4):345-359
Environmental models are often too large and cumbersome for effective use in regulatory decision making or in the characterization of uncertainty. This paper describes and compares four response surfaces that could complement a large-scale water quality model, the U.S. National Water Pollution Control Assessment Model (NWPCAM), in simulation and regulatory decision support applications. Results show that a physically based reduced-form model that exploits the mathematical structure of the underlying water quality model is a better predictor of policy-relevant outputs than the polynomial expansions that are frequently used in response surface studies. 相似文献
10.
James A. Entry 《Environmental monitoring and assessment》2013,185(2):1985-2000
The Loxahatchee National Wildlife Refuge (Refuge) is affected by inflows containing elevated contaminant concentrations originating from agricultural and urban areas. Water quality was determined using three networks: the Northern Refuge (NRN), the Southern Refuge (SRN), and the Consent Decree (CDN) monitoring networks. Within these networks, the Refuge was divided into four zones: (1) the canal zone surrounding the marsh, (2) the perimeter zone (0 to 2.5 km into the marsh), (3) the transition zone (2.5 to 4.5 km into the marsh), and (4) the interior zone (>4.5 km into the marsh). In the NRN, alkalinity (ALK) and conductivity (SpC) and dissolved organic carbon, total organic carbon, total dissolved solids (TDS), Ca, Cl, Si, and SO4 concentrations were greater in the perimeter zone than in the transition or interior zone. ALK, SpC, and SO4 concentrations were greater in the transition than in the interior zone. ALK, SpC, and TDS values, Ca, SO4, and Cl had negative curvilinear relationships with distance from the canal toward the Refuge interior (r 2?=?0.78, 0.67, 0.61, 0.77, 0.62, and 0.57, respectively). ALK, TB and SpC, and Ca and SO4 concentrations decreased in the canal and perimeter zones from 2005 to 2009. Important water quality assessments using the SRN and CDN cannot be made due to the sparseness and location of sampling sites in these networks. The number and placement monitoring sites in the Refuge requires optimization based on flow pattern, distance from contaminant source, and water volume to determine the effect of canal water intrusion on water quality. 相似文献
11.
Ghumman AR 《Environmental monitoring and assessment》2011,180(1-4):115-126
Water quality of rivers, natural lakes, and reservoirs in developing countries is being degraded because of the contaminated inflows. There is a serious need for appropriate water quality monitoring for future planning and management of clean water resources. Quality of water in Rawal Lake Pakistan has been investigated in this paper. Flows from the upstream of Rawal Lake and its surrounding villages are highly polluted. Lake water quality parameters like pH, turbidity, alkalinity, calcium, nitrite, sulfate, biological oxygen dissolved, dissolved oxygen, chloride, total dissolved solids (TDS), and coliforms were investigated. Samples of water from different locations of Korang River were collected and tested. Most of the data was collected by field sampling and field visits. However, long-term information was taken from different departments. Statistical parameters (standard deviation, maximum, minimum, mean, mode, kurtosis, skew, and Euclidean distance) of variables were determined. A distinct parameter based on the difference of the maximum value the variable and maximum allowable value of that variable defined by World Health Organization was used for analysis. Grouping and clustering of elements was made on the basis of this parameter. Trend of increasing or decreasing of values of variables over a long time was also taken into account for grouping the variables. It was concluded that the concentration of seven contaminants was higher as compared to the permissible limits under environmental standards. These variables need immediate attention. The environmentally bad conditions of Rawal Lake can only be rectified by appropriate lake environmental supervision, watershed management, and implementation of environmental legislation. 相似文献
12.
Gajanan K. Khadse Morami Kalita Sarika N. Pimpalkar Pawan K. Labhsetwar 《Environmental monitoring and assessment》2011,178(1-4):401-414
To ascertain the quality of drinking water being supplied, water quality monitoring and surveillance was conducted in Gangtok city at various treatment stages, service reservoirs, distribution network, public standposts, and households. No significant change in raw water quality was observed on day-to-day basis. Residual chlorine was found in the range of nil to 0.2 mg/l in the sump water/finished water. Throughout the year (i.e., during summer, winter, and monsoon seasons), the total coliform and fecal coliform counts were ranged from nil to 7 CFU/100 ml and nil to 3 CFU/100 ml, respectively, in sump water of Selep and VIP complex water treatment plant; however, at consumer end, those were observed as nil to 210 CFU/100 ml and nil to 90 CFU/100 ml, respectively. These variations in bacterial counts among the different service reservoirs and consumer ends may be attributed to the general management practices for maintenance of service reservoirs and the possibility of enroute contamination. Evaluation of the raw water quality indicates that the water is suitable for drinking after conventional treatment followed by disinfection. The finished water quality meets the level of standards described as per Bureau of Indian Standard specifications (BIS:10500 1991) for potability in terms of its physicochemical characteristics. 相似文献
13.
Laura N. Rigacci Adonis D. N. Giorgi Carolina S. Vilches Natalia Alejandra Ossana Alfredo Salibián 《Environmental monitoring and assessment》2013,185(11):9161-9168
The lower portion of the Reconquista River is highly polluted. However, little is known about the state of the high and middle basins. The aims of this work were to assess the water quality on the high and middle Reconquista River basins and to determinate if the presence of a reservoir in the river has a positive effect on the water quality. We conducted a seasonal study between August 2009 and November 2010 at the mouth of La Choza, Durazno, and La Horqueta streams at the Roggero reservoir—which receives the water from the former streams—at the origin of the Reconquista River and 17 km downstream from the reservoir. We measured 25 physical and chemical parameters, including six heavy metal concentrations, and performed a multivariate statistical analysis to summarize the information and allow the interpretation of the whole data set. We found that the Durazno and La Horqueta streams had better water quality than La Choza, and the presence of the reservoir contributed to the improvement of the water quality, allowing oxygenation of the water body and processing of organic matter and ammonia. The water quality of the Reconquista River at its origin is good and similar to the reservoir, but a few kilometers downstream, the water quality declines as a consequence of the presence of industries and human settlements. Therefore, the Roggero reservoir produces a significant improvement of water quality of the river, but the discharge of contaminants downstream quickly reverses this effect. 相似文献
14.
Bergquist DC Heuberger D Sturmer LN Baker SM 《Environmental monitoring and assessment》2009,148(1-4):409-419
In 2000, Florida's fast-growing hard clam aquaculture industry became eligible for federal agricultural crop insurance through the US Department of Agriculture, but the responsibility for identifying the cause of mortality remained with the grower. Here we describe the continuous water quality monitoring system used to monitor hard clam aquaculture areas in Florida and show examples of the data collected with the system. Systems recording temperature, salinity, dissolved oxygen, water depth, turbidity and chlorophyll at 30 min intervals were installed at 10 aquaculture lease areas along Florida's Gulf and Atlantic coasts. Six of these systems sent data in real-time to a public website, and all 10 systems provided data for web-accessible archives. The systems documented environmental conditions that could negatively impact clam survival and productivity and identified biologically relevant water quality differences among clam aquaculture areas. Both the real-time and archived data were used widely by clam growers and nursery managers to make management decisions and in filing crop loss insurance claims. While the systems were labor and time intensive, we recommend adjustments that could reduce costs and staff time requirements. 相似文献
15.
A water quality monitoring network (WQMN) must be designed so as to adequately protect the water quality in a catchment. Although
a simulated annealing (SA) method was previously applied to design a WQMN, the SA method cannot ensure the solution it obtained
is the global optimum. Therefore, two new linear optimization models are proposed in this study to minimize the deviation
of the cost values expected to identify the possible pollution sources based on uniform cost (UC) and coverage elimination
uniform cost (CEUC) schemes. The UC model determines the expected cost values by considering each sub-catchment being covered
by which station, while the CEUC model determines the coverage of each station by eliminating the area covered by any upstream
station. The proposed models are applied to the Derchi reservoir catchment in Taiwan. Results show that the global optimal
WQMN can be effectively determined by using the UC or CEUC model, for which both results are better than those from the SA
method, especially when the number of stations becomes large. 相似文献
16.
Factors dominating stratification cycle and seasonal water quality variation in a Korean estuarine reservoir 总被引:4,自引:0,他引:4
Lee YG Kang JH Ki SJ Cha SM Cho KH Lee YS Park Y Lee SW Kim JH 《Journal of environmental monitoring : JEM》2010,12(5):1072-1081
A comprehensive monitoring program was conducted during 2005-2007 to investigate seasonal variations of hydrologic stability and water quality in the Yeongsan Reservoir (YSR), located at the downstream end of the Yeongsan River, Korea. A principal component analysis (PCA) was performed to identify factors dominating the seasonal water quality variation from a large suite of measured data--11 physico-chemical parameters from 48 sampling sites. The results showed that three principal components explained approximately 62% of spatio-seasonal water quality variation, which are related to stratifications, pollutant loadings and resultant eutrophication, and the advective mixing process during the episodic rainfall-runoff events. A comparison was then made between YSR and an upstream freshwater reservoir (Damyang Reservoir, DYR) in the same river basin during an autumn season. It was found that the saline stratification and pollutant input from the upstream contributed to greater concentrations of nutrients and organic matter in YSR compared to DYR. In YSR, saline stratification in combination with thermal stratification was a dominant cause of the longer period (for two consecutive seasons) of hypoxic conditions at the reservoir bottom. The results presented here will help better understand the season- and geography-dependent characteristics of reservoir water quality in Asian Monsoon climate regions such as Korea. 相似文献
17.
对2007-2013年乌鲁木齐市集中式饮用水源地水质监测数据进行综合分析,泉水型地下饮用水源地米东区三水厂受储水介质及当地地质化学结构的影响,溶解盐类常年超标,水质较差;湖库型地表水源地五、八水厂总磷浓度在个别年份存在一定程度的超标现象,且地表水源地中挥发性卤代烃类、硝基苯和酞酸酯类等有机项目及镍等重金属类检出率较高,存在一定程度的风险。对此提出了进一步完善水源地环境保护及合理开发优质水资源的对策建议,为首府饮用水源地的保护和相关研究工作提供依据。 相似文献
18.
苏州城区河道水质现状分析 总被引:1,自引:0,他引:1
《干旱环境监测》2015,(3)
跟踪了苏州城区内27个重点河流断面半年的监测数据,重点监测了溶解氧、氨氮、总磷、高锰酸盐指数4个富营养化指标。计算了各种污染物单因子污染指数、主要污染物分担率和平均污染指数,并对水质污染程度进行综合评价。结果表明,在苏州城区河道的27个重点监测断面中,大部分属于中度污染,水体的主要污染物为溶解氧、氨氮和总磷。分析了可能导致城区河道水体污染的主要原因,并提出治理建议。 相似文献
19.
Xiaodong Yu Yang Li Xiaofeng Gu Jiming Bao Huizhong Yang Li Sun 《Environmental monitoring and assessment》2014,186(12):8969-8980
Water quality monitoring is a critical part of environmental management and protection, and to be able to qualitatively and quantitatively determine contamination and impurity levels in water is especially important. Compared to the currently available water quality monitoring methods and techniques, laser-induced breakdown spectroscopy (LIBS) has several advantages, including no need for sample pre-preparation, fast and easy operation, and chemical free during the process. Therefore, it is of great importance to understand the fundamentals of aqueous LIBS analysis and effectively apply this technique to environmental monitoring. This article reviews the research conducted on LIBS analysis for liquid samples, and the article content includes LIBS theory, history and applications, quantitative analysis of metallic species in liquids, LIBS signal enhancement methods and data processing, characteristics of plasma generated by laser in water, and the factors affecting accuracy of analysis results. Although there have been many research works focusing on aqueous LIBS analysis, detection limit and stability of this technique still need to be improved to satisfy the requirements of environmental monitoring standard. In addition, determination of nonmetallic species in liquid by LIBS is equally important and needs immediate attention from the community. This comprehensive review will assist the readers to better understand the aqueous LIBS technique and help to identify current research needs for environmental monitoring of water quality. 相似文献
20.
Measurement sensitivity and bias quality control metrics are commonly reported for water-quality parameters measured in the laboratory. Less commonly recognized is that they should also be reported for field-measured parameters. Periodic evaluation helps document data quality and can help serve as early warning if there are problems with methods or techniques that could negatively affect ability to interpret threshold values and trends over time. This study focuses on traditional assessment of bias and introduces a new method for estimating measurement sensitivity of water-quality parameters measured monthly in the field. Alternative measurement sensitivity is a new data quality indicator used to demonstrate how quantifying sensitivity at the measurement level can improve understanding the uncertainty affecting each reported data value. That, in turn, can help interpret the meaning of results from many separate data points measured in the field. In this 30-month study, pH and specific conductance consistently met, and dissolved oxygen did not always meet NPS and USGS quality control standards for bias. Evaluation of dissolved oxygen bias and sensitivity during the study provided impetus to improve calibration techniques that resulted in data that later met quality goals. 相似文献