首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of the street configurations on pollutants dispersion from vehicles exhausts within urban canyons was numerically investigated using a computational fluid dynamics (CFD) model. Three-dimensional flow and dispersion of gaseous pollutants were modeled using standard kappa - epsilon turbulence model, which was numerically solved based on Reynolds-averaged Navier-Stokes equations by the commercial CFD code FLUENT. The concentration fields in the urban canyons were examined in three cases of street configurations: (1) a regular-shaped intersection, (2) a T-shaped intersection and (3) a Skew-shaped crossing intersection. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against wind tunnel results in order to optimize the turbulence model. Numerical predictions agreed reasonably well with wind tunnel results. The results obtained indicate that the mean horizontal velocity was very small in the center near the lower region of street canyon. The lowest turbulent kinetic energy was found at the separation and reattachment points associated with the corner of the down part of the upwind and downwind buildings in the street canyon. The pollutant concentration at the upwind side in the regular-shaped street intersection was higher than that in the T-shaped and Skew-shaped street intersections. Moreover, the results reveal that the street intersections are important factors to predict the flow patterns and pollutant dispersion in street canyon.  相似文献   

2.
A measuring campaign was conducted in the street canyon 'Runeberg street' in Helsinki in 1997. Hourly concentrations of carbon monoxide (CO), nitrogen oxides (NOX), nitrogen dioxide (NO2) and ozone (O3) were measured at the street and roof levels, and the relevant hourly meteorological parameters were measured at the roof level. The hourly street level measurements and on-site electronic traffic counts were conducted during the whole year 1997, and roof level measurements were conducted during approximately two months, from 3 March to 30 April in 1997. The Operational Street Pollution Model (OSPM) was used to calculate the street concentrations and the results were compared with the measurements. The overall agreement between measured and predicted concentrations was good for CO and NOx, but the model slightly overestimated the measured concentrations of NO2. The database, which contains all measured and predicted data, is available for a further testing of other street canyon dispersion models.  相似文献   

3.
The Computational Fluid Dynamics code CFX-TASCflow is used for simulating the wind flow and pollutant concentration patterns in two-dimensional wind-tunnel models of an urban area. Several two-dimensional multiple street canyon configurations are studied corresponding to different areal densities and roof shapes. A line source of a tracer gas is placed at the bottom of one street canyon for modelling street-level traffic emissions. The flow fields resulting from the simulations correspond to the patterns observed in street canyons. In particular and in good agreement with observations, a dual vortex system is predicted for a deep flat-roof street canyon configuration, while an even more complex vortex system is evidenced in the case of slanted-roof square street canyons. In agreement with measurement data, high pollutant concentration levels are predicted either on the leeward or the windward side of the street canyon, depending on the geometrical details of the surrounding buildings.  相似文献   

4.
A measuring campaign was conducted in a street canyon (Runeberg St.) in Helsinki in 2003–2004. The concentrations of NO x , NO2, PM10 and PM2.5 were measured at street level and at roof level at an urban background location. This study utilises the data measured from 1 Jan to 30 April, 2004, when wind speed and direction measurements were also conducted on-site at the roof level. The computational fluid dynamics model ADREA-HF was used to compute the street concentrations, and the results were compared with the measurements. The predictions for the selected cases agreed fairly well (within < 25 % for 15 min average values) with the measured data, except for two cases: a windward flow in case of a low wind speed, and a moderate southerly flow parallel to the street canyon. The main reasons for the differences of predictions and measurements are the negligence of traffic-induced turbulence in the modelling and an under-prediction of ventilation of urban background air from a crossing street. Numerical results are presented for various example cases; these illustrate the formation of the vortices in the canyon in terms of the wind direction and speed and the influence of the characteristics of the flow fields on the concentration distributions.  相似文献   

5.
The analysis of three years of 8-h CO concentration values registered in a deep street canyon downtown shows high frequency of values that exceed WHO health protection guidelines. An inverse relationship between opposing percentiles of the distributions of CO concentrations and mean wind speed could be found. Data also showed a variation of mean CO values with prevailing wind direction. The averaged concentration value obtained when the sampler probe is on the leeward side is lower than the obtained when it is on the windward wall. A preliminary explanation of this feature may be related to the advection of polluted air from a high traffic density area nearby.  相似文献   

6.
Carbon monoxide concentrations were measured at ground level (1 m) near heavy traffic streets in downtown Santiago de Chile in periods of low (November and December), intermediate (April) and high (May) ambient concentrations. Also, measurements were carried out at several heights (from 1 to 127 m) in Santiago’s main street during winter time. Measurements carried out at ground level show maximum values during the morning rush hour, with values considerably higher than those reported by the urban air quality network, particularly in summer time. However, the measured values are below air quality standards. Vertical CO profiles were measured in a tower located in the center of downtown. Below 40 m (average altitude of neighboring buildings), the profiles do not show a consistent vertical gradient, with CO concentrations increasing or decreasing with height, regardless of atmospheric stability. In this low altitude range, the observed vertical profiles are poorly predicted by a street canyon model, and the measured concentrations can not be described by a simple exponential decay. At higher altitudes (40 and 127 m) a negative gradient in CO concentrations is observed, both for stable and unstable atmospheric conditions. The values of CO measured at 127 m are relatively well described by an Eulerian dispersion model running with current CO emission inventories for Santiago, although this model tends to predict stepper CO gradients than the observed ones.  相似文献   

7.
Eighty-five measurement campaigns were performed repeatedly to compare the concentration variation profiles along two intra-urban roads—one with open configuration and the other with street canyon effect. Fixed-effects panel data analysis was applied for formulating a model to express the PM10 concentrations along intra-urban roads in terms of parameters like nearby central monitoring data, traffic counts and meteorological conditions with an objective to analyze the PM10 concentration variation patterns along the two roads. Our findings reveal that traffic intensity and metrological conditions exert influence on concentration variation for both types of road configurations while wind velocity only affect the pollutants removal effectiveness of open road configuration. Further analysis unveils that the PM10 concentration distribution profiles within a compact city environment are not always uniform and are dependent on the road configuration. Considerable PM10 concentration differences were observed along the street canyon, and 70% of their variations are attributed to variations in their road aspect ratios. By contrast, no significant concentration difference is observed at open road configurations.  相似文献   

8.
A 3-D Eulerian-Lagrangian approach to moving vehicles is presented that takes into account the traffic induced flow rate and turbulence. The method is applied to pollutants dispersion in a street canyon. The approach is based on CFD calculations using Eulerian approach to the continuous phase and Lagrangian approach to the "discrete phase" of moving objects - vehicles. A commercial CFD code StarCD was used into which the Lagrangian model was integrated. As an example a street canyon is taken into consideration. It has the length of 50 m and the aspect ratio of 1.27. The speed of wind was assigned values of 4, 7 and 12 m/s at the altitude of 300 m. The total height of the domain is 115 m. In the study different traffic situations are considered, namely one-way and two-way traffic with different traffic rates per lane. The predictions show that different traffic situations affect pollutants dispersion in the street canyon and that there are also differences in the pollutants dispersion in case of one- and two-way traffic.  相似文献   

9.
The goal of this study is to investigate numerically the wind flow and pollutant dispersion within an urban street canyon containing an elevated expressway and reveal the impacts of elevated expressway on the atmospheric environment in the canyon. A two-dimensional numerical model for simulating airflow and pollutant dispersion inside urban street canyons is first developed based on the Reynolds-averaged Navier–Stokes equations coupled with the standard k???ε turbulence model and the convection–diffusion equation for passive species transport, and then it is validated against a wind tunnel experiment. It was found that the model-predicted results agree well with the experimental data. Having established this, the wind fields and pollutant distributions in the canyon containing an elevated expressway are evaluated. The numerical results show that the expressway height above the street floor and the gap distance between the expressway and the building wall have considerable influence on airflow and pollutant level inside a canyon: (1) the vortical flow structure in the canyon varies with the expressway height for a constant gap distance, under certain expressway heights, only one main clockwise vortex is formed, while under others one main vortex as well as one or two secondary vortices above and below the expressway are created; (2) the pollutant level within the canyon increases when an expressway is placed in the canyon, especially when the expressway height equals the building height the flow velocities in the canyon are drastically reduced and air exchange in and above the canyon is seriously impeded by the expressway, which leads to a much higher pollution level in the canyon; and (3) the wider gap distance is favorable to pollutant removal from the canyon.  相似文献   

10.
Modelling of Fluid Flow and Pollutant Dispersion in a Street Canyon   总被引:6,自引:0,他引:6  
A two-dimensional steady state numerical simulation has been carried out for a typical street canyon ventilated by a cross-wind. The PHOENICS package from CHAM was used to solve for the air flow above and within the street canyon. The k-epsilon turbulence model was used for turbulence modelling and pollutant sources were added at ground level over the road but not over the pavements. Results for the air flow showed the formation of a longitudinal vortex within the street canyon, as found by other researchers. Pollutant concentrations were predicted with the highest values occurring at the leeward walls of the upwind buildings, and the lowest values on the windward walls of the downwind buildings. The accuracy of these simulations was examined by comparing the predicted results with field observations. Reasonable agreement was obtained, confirming the difference between concentrations on the leeward and windward walls. The results show that the dispersion characteristics can be simulated in terms of structural configurations.  相似文献   

11.
北京市城市非点源污染特征的研究   总被引:18,自引:1,他引:18  
通过监测降雨径流水质,研究了北京市城市非点源污染的特征。结果表明,北京市城市地表径流水排入任何地表水体都会对其造成污染,且城市地表径流水的大部分水质指标已经达到了污水综合排放的三级标准,因此,我们对待城市地表径流水应该如对待污水一样处理。对于TN、TP、CODCr、BOD5浓度,路面径流要高于屋顶径流,而对于SS浓度,屋顶径流高于路面径流。总磷TP颗粒吸附态的污染物对总污染物的贡献最大,对于路面径流高达83.1%,对于屋顶径流为68.6%,其次是CODCr,总氮TN的颗粒吸附态的贡献较低。通过沉积或过滤去除城市地表径流中的悬浮颗粒物,可以提高城市地表径流的水质。所有污染物随降雨过程变化的总体趋势为雨水初期径流污染物浓度很高,随降雨历时的延长,污染物浓度逐渐下降并趋于稳定。初期径流危害较大。  相似文献   

12.
In the U.K., local authorities have new duties to review and assess air quality. Dispersion models are important tools in this process. The performance of a street canyon model, AEOLIUS, in calculating carbon monoxide (CO) concentrations in urban areas is discussed. A field experiment was conducted in a busy street canyon in Leek, Staffordshire. Wind speed and direction were measured at three heights adjacent to the street. The canyon's CO concentrations and traffic counts were recorded. Predicted concentrations of CO, calculated using AEOLIUS, were compared with the observed values. The concept of a roof-top wind is discussed, as are the consequences of using wind measurements from outside the town. Choice of wind measurement location and height of the anemometer above the canyon had a pronounced effect on calculating the roof-top wind. Two methods of deriving a street level wind speed from a roof-top wind speed gave results that differ by up to a factor of two. AEOLIUS had variable skill at predicting CO concentrations depending on the roof-top wind direction: possible reasons for this variability are explored. A sensitivity study of the model showed that vehicle emissions have the greatest impact on predicted concentrations. Implications for local air quality management are discussed.  相似文献   

13.
Flow Field and Pollution Dispersion in a Central London Street   总被引:3,自引:0,他引:3  
Urban pollution due to roadways is perceived as a major obstacle to implementing low-energy ventilation design strategies in urban non-domestic buildings. As part of a project to evaluate the use of a computational fluid flow model as an environmental design tool for urban buildings, this paper seeks to address the impact of pollution from roadways on buildings in areas of restricted topography and assess dominant influencing factors and other requirements for testing the flow model predictions. Vertical profiles of carbon monoxide (CO) and temperature at the facade of a building in a Central London street, in addition to above-roof wind speed and direction, were measured over a period of three months. The street has a height-to-width (h/W) ratio of 0.6 and is of asymmetric horizontal alignment. The air flows in the area surrounding the building were modelled using a computational fluid flow model for two orthogonal wind directions. CO concentrations were calculated from the steady-state flow field in order to place point measurements in the context of the flow field, identify persistent features in the measured data attributable to the flow structure and, by comparison with measurements, identify further testing requirements.Some qualitative and quantitative agreement between measured and modelled data was obtained. Measured CO levels at the building facade and vertical variations of CO were small, as predicted by the model. A wake-interference type flow was predicted by the model for wind speeds >2ms-1 with formation of a vortex cell occurring for roof-level wind speeds >5ms-1 for the cross-wind direction, which was reflected in the measured CO levels and facade gradients. A direction-dependent inverse relationship was noted, both in the model and measurements, between above-roof wind speed and facade CO levels although statistical correlations in the time series were poor. CO concentrations at the facade were found to increase with height frequently, as well as decrease, especially for parallel winds. It is expected that mechanical turbulence due to vehicles was largely responsible. In comparison, thermal stratification appeared to play only a minor role in controlling vertical mixing in the street, under low wind speed conditions.  相似文献   

14.
This paper studies the effects of building orientations on the gaseous pollutant dispersion released from vehicles exhaust in street canyons through computational fluid dynamics (CFD) numerical simulations using three kε turbulence models. Four building orientations of the street canyon were examined in the atmospheric boundary layer. The numerical results were validated against wind-tunnel results to optimize the turbulence models. The numerical results agreed well with the wind-tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height in the street canyon was on the windward side for the building orientations θ?=?112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the building orientation increases from θ?=?90°. The concentration in the cavity region for the building orientation θ?=?90° was higher than for the wind directions θ?=?112.5°, 135°, and 157.5°. The wind velocity and turbulence energy increase as the building orientation increases. The finding from this work can be used to help urban designers and policy-makers in several aspects.  相似文献   

15.
The Helsinki Metropolitan Area Council (YTV) is responsible for air quality monitoring in the Helsinki area. Air quality has been monitored periodically since the late 1950s. An automatic SO2 monitoring network was constructed in 1975 and TSP measurements were added in 1978. Since then the network has been expanded and currently five automatic multicomponent stations form the basis of the network monitoring SO2, NO, NO2, CO, PM10 and O3 concentrations. Manual TSP and PM10 measurements are also conducted. Mobile monitoring units are also being used as well as special measurement campaigns. The effects of air pollution on nature are studied in bioindicator monitoring. An air quality index is used in order to inform the public of the current air quality situation. Changes in air quality are reflected in monitoring strategy. SO2 concentrations have decreased in the past two decades. Annual averages in 1995 were at or below 5 µg/m3. Traffic is the major source for pollutants even though catalytic converters have lowered traffic emissions somewhat. The highest annual average NO2 concentration at an urban site was 49 µg/m3 in 1995, and there has been no clear change in NO2 levels. There has been a decreasing trend in CO concentrations. Maximum annual TSP and PM10 averages in 1995 were 92 and 32 µg/m3, respectively. The highest average lead concentration was 0.01 µg/m3. Elevated concentrations are experienced from time to time. During the spring daily TSP and PM10 concentrations can go up to around 300 and 150 µg/m3, respectively. This is caused by resuspension mainly due to street sanding. Also a major winter NO2 episode occurred in December 1995. The highest hourly NO2 concentrations reached 400 µg/m3.  相似文献   

16.
We developed a method to analyze atmospheric SO(x) (particulate SO(4)(2-)+ gaseous SO(2)) and NO(x) (NO + NO(2)) simultaneously using a battery-operated portable filter pack sampler. NO(x) determination using a filter pack method is new. SO(x) and NO(x) were collected on a Na(2)CO(3) filter and PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) + TEA (triethanolamine) filters (6 piled sheets), respectively. Aqueous solutions were then used to extract pollutants trapped by the filters and the resulting extracts were pre-cleaned (e.g. elimination of PTIO) and analyzed for sulfate and nitrite by ion chromatography. Recoveries of SO(2) and NO(x) from standard pollutant gases and consistency of the field data with those from other instrumental methods were examined to evaluate our method. SO(x) and NO(x) could be analyzed accurately with determination limits of 0.2 ppbv and 1.0 ppbv (as daily average concentrations), respectively. The sampler can determine SO(x) and NO(x) concentrations at mountainous or remote sites without needing an electric power supply.  相似文献   

17.
通过对TSP、SO2浓度在不同高度实测研究.得出平顶山市SO2在1.5m至20m不同高度监测,高度影响无显著性差异;TSP在5m至15m不同高度监测,高度影响无显著性差异。  相似文献   

18.
A single compartment model has been constructed for predicting hourly concentrations of pollutant concentrations arising from vehicular emissions within a typical street canyon. The model takes account of traffic densities and composition to estimate pollutant emissions within the model compartment. Meteorological data on wind speed and direction are used to define the exchanges of pollutants between the compartment and the surrounding air. A parameter is also included to describe the exchange in calm conditions. The pollutant concentrations are then estimated from a steady state mass balance equation for the compartment, assuming conservation of pollutants. The model was applied to the prediction of carbon monoxide concentrations in Hope Street, Glasgow. Model parameters were fitted using field measurements, together with concurrent meteorological data and traffic flows estimated from traffic census data for Hope Street. The model accounted well for the observed variations in carbon monoxide. It was found that the model parameters varied seasonally, perhaps due to differences in atmospheric stability which have not so far been included in the model formulation.  相似文献   

19.
Political and economical transition in the Central and Eastern Europe at the end of eighties significantly influenced all aspects of life as well as technological infrastructure. Collapse of outdated energy demanding industry and adoption of environmental legislation resulted in seeming improvements of urban environmental quality. Hand in hand with modernization the newly adopted regulations also helped to phase out low quality coal frequently used for domestic heating. However, at the same time, the number of vehicles registered in the city increased. The two processes interestingly acted as parallel but antagonistic forces. To interpret the trends in urban air quality of Prague, Czech capital, monthly averages of PM(10), SO(2), NO(2), NO, O(3) and CO concentrations from the national network of automated monitoring stations were analyzed together with long term trends in fuel consumption and number of vehicles registered in Prague within a period of 1992-2005. The results showed that concentrations of SO(2) (a pollutant strongly related to fossil fuel burning) dropped significantly during the period of concern. Similarly NO(X) and PM(10) concentrations decreased significantly in the first half of the nineties (as a result of solid fuel use drop), but remained rather stable or increased after 2000, presumably reflecting rapid increase of traffic density. In conclusion, infrastructural changes in early nineties had a strong positive effect on Prague air quality namely in the first half of the period studied, nevertheless, the current trend in concentrations of automotive exhaust related pollutants (such as PM(10), NO(X)) needs adoption of stricter measures.  相似文献   

20.
Diffusive samplers were used to measure the vertical concentrations of benzene, toluene, n-hexane, cyclohexane, ethylbenzene and o-, m- and p-xylenes on both sides of two NS-oriented street canyons in Murcia (Spain) during a 5-day period. Non-dimensional relationships of concentration and height were calculated in order to study the behaviour of their concentration vertical profiles. The results show that the vertical profiles of benzene, toluene, n-hexane and cyclohexane concentrations were similar in both streets and on both sides of each street. Some differences were found in vertical profiles between streets and sides for ethylbenzene and xylenes, probably due to their higher affinity for adsorption into building materials. The similarities found for the first set of VOCs suggest that the dynamics of the dispersion was the same for both streets and was mainly influenced by microscale thermal effects. Finally, the concentration measurements of benzene, toluene, n-hexane, cyclohexane, and ethylbenzene were adjusted to expressions in the form c?=?c 0(h/h 0) A , and a regression coefficient R 2?=?0.962 (p?=?0.0000) was obtained. The decreasing concentration of these compounds with height should be taken into account when assessing population exposure to these pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号