首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
A series of miscible-displacement experiments was conducted to examine the impact of sorption contact time on desorption and elution of trichloroethene from a well-characterized soil. A large number of contact times were examined, spanning 1 h to 4 years (∼2 × 106 h). Effluent trichloroethene concentrations were monitored over a range of greater than six orders of magnitude, allowing characterization of potential asymptotic tailing. The results of the column experiments showed that trichloroethene exhibited extensive elution tailing for all experiments. Each increase in contact time resulted in a successive increase in the extent of tailing. In total, the number of pore volumes of water flushing required to reach the analytical detection limit increased from approximately 1000 for the 1-h contact time to almost 9000 for the 4-year contact time. These results indicate that a contact time of less than 1 h produced a sorbed phase that is relatively resistant to desorption, and that a progressive increase in resistance to desorption occurred with increased contact time. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous-distribution reaction function was used to successfully simulate the measured data. The nonlinear sorption, the apparent rapid development of desorption resistance, and the progressive increase in resistance with increasing contact time are consistent with behavior anticipated for sorbate interactions with hard-carbon components of the soil.  相似文献   

2.
Colloid-facilitated transport has been recognized as a potentially important and overlooked contaminant transport process. In particular, it has been observed that conventional two phase sorption models are often unable to explain transport of highly sorbing compounds in the subsurface appropriately in the presence of colloids. In this study a one-dimensional model for colloid-facilitated transport of chemicals in unsaturated porous media is developed. The model has parts for simulating coupled flow, and colloid transport and dissolved and colloidal contaminant transport. Richards' equation is solved to model unsaturated flow, and the effect of colloid entrapment and release on porosity and hydraulic conductivity of the porous media is incorporated into the model. Both random sequential adsorption and Langmuir approaches have been implemented in the model in order to incorporate the effect of surface jamming. The concept of entrapment of colloids into the air-water interface is used for taking into account the effect of retardation caused due to existence of the air phase. A non-equilibrium sorption approach with options of linear and Langmuir sorption assumptions are implemented that can represent the competition and site saturation effects on sorption of multiple compounds both to the solid matrix and to the colloidal particles. Several demonstration calculations are performed and the conditions in which the non-equilibrium model can be approximated by an equilibrium model are also studied.  相似文献   

3.
Contaminant breakthrough behavior in a variety of heterogeneous porous media was measured in laboratory experiments, and evaluated in terms of both the classical advection-dispersion equation (ADE) and the continuous time random walk (CTRW) framework. Heterogeneity can give rise to non-Fickian transport patterns, which are distinguished by "anomalous" early arrival and late time tails in breakthrough curves. Experiments were conducted in two mid-scale laboratory flow cells packed with clean, sieved sand of specified grain sizes. Three sets of experiments were performed, using a "homogeneous" packing, a randomly heterogeneous packing using sand of two grain sizes, and an exponentially correlated structure using sand of three grain sizes. Concentrations of sodium chloride tracer were monitored at the inflow reservoir and measured at the outflow reservoir. Breakthrough curves were then analyzed by comparison to fitted solutions from the ADE and CTRW formulations. In all three systems, including the "homogeneous" one, subtle yet measurable differences between Fickian and non-Fickian transport were observed. Quantitative analysis demonstrated that the CTRW theory characterized the full shape of the breakthrough curves far more effectively than the ADE.  相似文献   

4.
The impact of co-solutes on sorption of tetrachloroethene (PCE) by two porous media with low organic-carbon contents was examined by conducting batch experiments. The two media (Borden and Eustis) have similar physical properties, but significantly different organic-carbon (OC) contents. Sorption of PCE was nonlinear for both media, and well-described by the Freundlich equation. For the Borden aquifer material (OC = 0.03%), the isotherms measured with a suite of co-solutes present (1,2-dichlorobenzene, bromoform, carbon tetrachloride, and hexachloroethane) were identical to the isotherms measured for PCE alone. These results indicate that there was no measurable impact of the co-solutes on PCE sorption for this system. In contrast to the Borden results, there was a measurable reduction in sorption of PCE by the Eustis soil (OC = 0.38%) in the presence of the co-solutes. The organic-carbon fractions of both media contain hard-carbon components, which have been associated with the manifestation of nonideal sorption phenomena. The disparity in results observed for the two media may relate to relative differences in the magnitude and geochemical nature of these hard-carbon components.  相似文献   

5.
Nonideal transport of contaminants in porous media has often been observed in laboratory characterization studies. It has long been recognized that multiple processes associated with both physical and chemical factors can contribute to this nonideal transport behavior. To fully understand system behavior, it is important to determine the relative contributions of these multiple factors when conducting contaminant transport and fate studies. In this study, the relative contribution of physical-heterogeneity-related processes versus those of nonlinear, rate-limited sorption/desorption to the observed nonideal transport of trichloroethene in an undisturbed aquifer core was determined through a series of miscible-displacement experiments. The results of experiments conducted using the undisturbed core, collected from a Superfund site in Tucson, AZ, were compared to those obtained from experiments conducted using the same aquifer material packed homogeneously. The results indicate that both physical and chemical factors, specifically preferential flow and associated rate-limited diffusive mass-transfer and rate-limited sorption/desorption, respectively, contributed to the nonideal behavior observed for trichloroethene transport in the undisturbed core. A successful prediction of trichloroethene transport in the undisturbed core was made employing a mathematical model incorporating multiple sources of nonideal transport, using independently determined model parameters to account for the multiple factors contributing to the nonideal transport behavior. The simulation results indicate that local-scale physical heterogeneity controlled the nonideal transport behavior of trichloroethene in the undisturbed core, and that nonlinear, rate-limited sorption/desorption were of secondary importance.  相似文献   

6.
Two-dimensional multiphase flow and transport simulators were refined and used to numerically investigate the entrapment and dissolution behavior of tetrachloroethylene (PCE) in heterogeneous porous media containing spatial variations in wettability. Measured hydraulic properties, residual saturations, and dissolution parameters were employed in these simulations. Entrapment was quantified using experimentally verified hydraulic property and residual saturation models that account for hysteresis and wettability variations. The nonequilibrium dissolution of PCE was modeled using independent estimates of the film mass transfer coefficient and interfacial area for entrapped and continuous (PCE pools or films) saturations. Flow simulations demonstrate that the spatial distribution of PCE is highly dependent on subsurface wettability characteristics that create differences in PCE retention mechanisms and the presence of subsurface capillary barriers. For a given soil texture, the maximum and minimum PCE infiltration depth was obtained when the sand had intermediate (an organic-wet mass fraction of 25%) and strong (water- or organic-wet) wettability conditions, respectively. In heterogeneous systems, subsurface wettability variations were also found to enhance or diminish the performance of soil texture-induced capillary barriers. The dissolution behavior of PCE was found to depend on the soil wettability and the spatial PCE distribution. Shorter dissolution times tended to occur when PCE was distributed over large regions due to an increased access of flowing water to the PCE. In heterogeneous systems, capillary barriers that produced high PCE saturations tended to exhibit longer dissolution times.  相似文献   

7.
Interest in coupled biodegradation and transport of organic contaminants has expanded greatly in the past several years. In a system in which biodegradation is coupled with solute transport, the magnitude and rate of biodegradation is influenced not only by properties of the microbial population and the substrate, but also by hydrodynamic properties (e.g., residence time, dispersivity). By nondimensionalizing the coupled-process equations for transport and nonlinear biodegradation, we show that transport behavior is controlled by three characteristic parameters: the effective maximum specific growth rate, the relative half-saturation constant, and the relative substrate-utilization coefficient. The impact on biodegradation and transport of these parameters, which constitute various combinations of factors reflecting the influences of biotic and hydraulic properties of the system, are examined numerically. A type-curve diagram based on the three characteristic parameters is constructed to illustrate the conditions under which steady and non-steady transport is observed, and the conditions for which the linear, first-order approximation is valid for representing biodegradation. The influence of constraints to microbial growth and substrate utilization on contaminant transport is also briefly discussed. Additionally, the impact of biodegradation, with and without biomass growth, on spatial solute distribution and moments is examined.  相似文献   

8.
Miscible-displacement experiments were conducted to examine the impact of microbial lag and bacterial cell growth on the transport of salicylate, a model hydrocarbon compound. The impacts of these processes were examined separately, as well as jointly, to determine their relative effects on biodegradation dynamics. For each experiment, a column was packed with porous medium that was first inoculated with bacteria that contained the NAH plasmid encoding genes for the degradation of naphthalene and salicylate, and then subjected to a step input of salicylate solution. The transport behavior of salicylate was non-steady for all cases examined, and was clearly influenced by a delay (lag) in the onset of biodegradation. This microbial lag, which was consistent with the results of batch experiments, is attributed to the induction and synthesis of the enzymes required for biodegradation of salicylate. The effect of microbial lag on salicylate transport was eliminated by exposing the column to two successive pulses of salicylate, thereby allowing the cells to acclimate to the carbon source during the first pulse. Elimination of microbial lag effects allowed the impact of bacterial growth on salicylate transport to be quantified, which was accomplished by determining a cell mass balance. Conversely, the impact of microbial lag was further investigated by performing a similar double-pulse experiment under no-growth conditions. Significant cell elution was observed and quantified for all conditions/systems. The results of these experiments allowed us to differentiate the effects associated with microbial lag and growth, two coupled processes whose impacts on the biodegradation and transport of contaminants can be difficult to distinguish.  相似文献   

9.
A two-dimensional model for colloid transport in geochemically and physically heterogeneous porous media is presented. The model considers patchwise geochemical heterogeneity, which is suitable to describe the chemical variability of many surficial aquifers with ferric oxyhydroxide-coated porous matrix, as well as spatial variability of hydraulic conductivity, which results in heterogeneous flow field. The model is comprised of a transient fluid flow equation, a transient colloid transport equation, and an equation for the dynamics of colloid deposition and release. Numerical simulations were carried out with the model to investigate the colloid transport behavior in layered and randomly heterogeneous porous media. Results demonstrate that physical and geochemical heterogeneities markedly affect the colloid transport behavior. Layered physical or geochemical heterogeneity can result in distinct preferential flow paths of colloidal particles. Furthermore, the combined effect of layered physical and geochemical heterogeneity may result in enhanced or reduced preferential flow of colloids. Random distribution of physical heterogeneity (hydraulic conductivity) results in a random flow field and an irregularly distributed colloid concentration profile in the porous medium. Contrary to random physical heterogeneity, the effect of random patchwise geochemical heterogeneity on colloid transport behavior is not significant. It is mostly the mean value of geochemical heterogeneity rather than its distribution that governs the colloid transport behavior.  相似文献   

10.
Remediation schemes for contaminated sites are often evaluated to assess their potential for source zone reduction of mass, or treatment of the contaminant between the source and a control plane (CP) to achieve regulatory limits. In this study, we utilize a stochastic stream tube model to explain the behavior of breakthrough curves (BTCs) across a CP. At the local scale, mass dissolution at the source is combined with an advection model with first-order decay for the dissolved plume. Field-scale averaging is then employed to account for spatial variation in mass within the source zone, and variation in the velocity field. Under the assumption of instantaneous mass transfer from the source to the moving liquid, semi-analytical expressions for the BTC and temporal moments are developed, followed by derivation of expressions for effective velocity, dispersion, and degradation coefficients using the method of moments. It is found that degradation strongly influences the behavior of moments and the effective parameters. While increased heterogeneity in the velocity field results in increased dispersion, degradation causes the center of mass of the plume to shift to earlier times, and reduces the dispersion of the BTC by lowering the concentrations in the tail. Modified definitions of effective parameters are presented for degrading solutes to account for the normalization constant (zeroth moment) that keeps changing with time or distance to the CP. It is shown that anomalous dispersion can result for high degradation rates combined with wide variation in velocity fluctuations. Implications of model results on estimating cleanup times and fulfillment of regulatory limits are discussed. Relating mass removal at the source to flux reductions past a control plane is confounded by many factors. Increased heterogeneity in velocity fields causes mass fluxes past a control plane to persist, however, aggressive remediation between the source and CP can reduce these fluxes.  相似文献   

11.
In certain hydrogeological situations, fluid density variations occur because of changes in the solute or colloidal concentration, temperature, and pressure of the groundwater. These include seawater intrusion, high-level radioactive waste disposal, groundwater contamination, and geothermal energy production. When the density of the invading fluid is greater than that of the ambient one, density-driven free convection can lead to transport of heat and solutes over larger spatial scales and significantly shorter time scales than compared with diffusion alone. Beginning with the work of Lord Rayleigh in 1916, thermal and solute instabilities in homogeneous media have been studied in detail for almost a century. Recently, these theoretical and experimental studies have been applied in the study of groundwater phenomena, where the assumptions of homogeneity and isotropy rarely, if ever, apply. The critical role that heterogeneity plays in the onset as well as the growth and/or decay of convective motion is discussed by way of a review of pertinent literature and numerical simulations performed using a variable-density flow and solute transport numerical code. Different styles of heterogeneity are considered and range from continuously "trending" heterogeneity (sinusoidal and stochastic permeability distributions) to discretely fractured geologic media. Results indicate that both the onset of instabilities and their subsequent growth and decay are intimately related to the structure and variance of the permeability field. While disordered heterogeneity tends to dissipate convection through dispersive mixing, an ordered heterogeneity (e.g., sets of vertical fractures) allows instabilities to propagate at modest combinations of fracture aperture and separation distances. Despite a clearer understanding of the processes that control the onset and propagation of instabilities, resultant plume patterns and their migration rates and pathways do not appear amenable to prediction at present. The classical Rayleigh number used to predict the occurrence of instabilities fails, in most cases, when heterogeneous conditions prevail. The incorporation of key characteristics of the heterogeneous permeability field into relevant stability criteria and numerical models remains a challenge for future research.  相似文献   

12.
We demonstrate a method to study reactive microbial transport in saturated translucent porous media using the bacteria Pseudomonas fluorescens 5RL genetically engineered to carry a plasmid with bioluminescence genes inducible by salicylate. Induced bacteria were injected into a cryolite grain filled chamber saturated with a sterile non-growth-promoting (phosphorus limited) chemical mixture containing salicylate as an aromatic hydrocarbon analogue. The amount of light produced by the bacteria serves as an estimator of the relative efficiency of aerobic biodegradation since bioluminescence is dependent on both salicylate and oxygen but only consumes oxygen. Bioluminescence was captured with a digital camera and analyzed to study the evolving spatial pattern of the bulk oxygen consuming reactions. As fluid flow transported the bacteria through the chamber, bioluminescence was observed to initially increase until an oxygen depletion zone developed behind the advective front. Bacterial transport was modeled with the advection dispersion equation and oxygen concentration was modeled assuming bacterial consumption via Monod kinetics with consideration of additional effects of rate-limited mass transfer from residual gas bubbles. Consistent with previous measurements, bioluminescence was considered proportional to oxygen consumed. Using the observed bioluminescence, model parameters were fit that were consistent with literature values and produced results in good agreement with the experimental data. These findings demonstrate potential for using this method to investigate the complex spatial and temporal dynamics of reactive microbial transport in saturated porous media.  相似文献   

13.
This work considers the applicability of conservative tracers for detecting high-saturation nonaqueous-phase liquid (NAPL) entrapment in heterogeneous systems. For this purpose, a series of experiments and simulations was performed using a two-dimensional heterogeneous system (10x1.2 m), which represents an intermediate scale between laboratory and field scales. Tracer tests performed prior to injecting the NAPL provide the baseline response of the heterogeneous porous medium. Two NAPL spill experiments were performed and the entrapped-NAPL saturation distribution measured in detail using a gamma-ray attenuation system. Tracer tests following each of the NAPL spills produced breakthrough curves (BTCs) reflecting the impact of entrapped NAPL on conservative transport. To evaluate significance, the impact of NAPL entrapment on the conservative-tracer breakthrough curves was compared to simulated breakthrough curve variability for different realizations of the heterogeneous distribution. Analysis of the results reveals that the NAPL entrapment has a significant impact on the temporal moments of conservative-tracer breakthrough curves.  相似文献   

14.
15.
Packed column and mathematical modeling studies were conducted to explore the influence of water saturation, pore-water ionic strength, and grain size on the transport of latex microspheres (1.1 microm) in porous media. Experiments were carried out under chemically unfavorable conditions for colloid attachment to both solid-water interfaces (SWI) and air-water interfaces (AWI) using negatively charged and hydrophilic colloids and modifying the solution chemistry with a bicarbonate buffer to pH 10. Interaction energy calculations and complementary batch experiments were conducted and demonstrated that partitioning of colloids to the SWI and AWI was insignificant across the range of the ionic strengths considered. The breakthrough curve and final deposition profile were measured in each experiment indicating colloid retention was highly dependent on the suspension ionic strength, water content, and sand grain size. In contrast to conventional filtration theory, most colloids were found deposited close to the column inlet, and hyper-exponential deposition profiles were observed. A mathematical model, accounting for time- and depth-dependent straining, produced a reasonably good fit for both the breakthrough curves and final deposition profiles. Experimental and modeling results suggest that straining--the retention of colloids in low velocity regions of porous media such as grain junctions--was the primary mechanism of colloid retention under both saturated and unsaturated conditions. The extent of stagnant regions of flow within the pore structure is enhanced with decreasing water content, leading to a greater amount of retention. Ionic strength also contributes to straining, because the number of colloids that are held in the secondary energy minimum increases with ionic strength. These weakly associated colloids are prone to be translated to stagnation regions formed at grain-grain junctions, the solid-water-air triple point, and dead-end pores and then becoming trapped.  相似文献   

16.
In Part I, the concepts of inherent, local and distant residence times (DRTs) were reviewed as metrics of the extent to which chemical discharges or emissions in one region or box are transported to distant regions. In this second part, the concepts are applied to geographically relevant systems to illustrate their applicability to the assessment of chemicals for long-range transport potential (LRTP). It is shown that the relative ranking of chemicals as characterized by the DRT method is similar to that of the characteristic travel distance concept. A DRT source-receptor matrix is developed that can express the chemical-specific potential of source regions to contaminate a specific receptor region of concern such as the Arctic. The matrix can be modified to identify for a specific source region the likely destinations of emissions as well as to assess the relative vulnerability of regions in the global environment to contaminants of concern.  相似文献   

17.
The production of N2 gas by denitrification may lead to the appearance of a gas phase below the water table prohibiting the conservative transport of tracer gases required for groundwater dating. We used a two-phase flow and transport model (STOMP) to study the reliability of 3H/3He, CFCs and SF6 as groundwater age tracers under agricultural land where denitrification causes degassing. We were able to reproduce the amount of degassing (R2 = 69%), as well as the 3H (R2 = 79%) and 3He (R2 = 76%) concentrations observed in a 3H/3He data set using simple 2D models. We found that the TDG correction of the 3H/3He age overestimated the control 3He/3He age by 2.1 years, due to the accumulation of 3He in the gas phase. The total uncertainty of degassed 3H/3He ages of 6 years (± 2 σ) is due to the correction of degassed 3He using the TDG method, but also due to the travel time in the unsaturated zone and the diffusion of bomb peak 3He. CFCs appear to be subject to significant degradation in anoxic groundwater and SF6 is highly susceptible to degassing. We conclude that 3H/3He is the most reliable method to date degassed groundwater and that two-phase flow models such as STOMP are useful tools to assist in the interpretation of degassed groundwater age tracer data.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号