首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytotoxicity to and uptake of enrofloxacin in crop plants   总被引:34,自引:0,他引:34  
Migliore L  Cozzolino S  Fiori M 《Chemosphere》2003,52(7):1233-1244
Phytotoxicity of enrofloxacin on crop plants Cucumis sativus, Lactuca sativa, Phaseolus vulgaris and Raphanus sativus was determined in a laboratory model: the effect of 50, 100 and 5000 microgl(-1) were evaluated after 30 days exposure by measuring post-germinative growth of primary root, hypocotyl, cotyledons and leaves. Concentrations between 50 and 5000 microgl(-1) induced both toxic effect and hormesis in plants, by significantly modifying both length of primary root, hypocotyl, cotyledons and the number/length of leaves. A toxic effect is induced by high concentration (5000 microgl(-1)), while hormesis occurs at low concentrations (50 and 100 microgl(-1)). A continuum between toxic effect and hormesis is found in the four plant species. Both toxic effect and hormesis can be related to an efficient plant drug uptake, in the order of microgg(-1). Plants are able to metabolize enrofloxacin into ciprofloxacin, as also happens in animals; Cucumis, Lactuca and Phaseolus biologically convert about one quarter of stored enrofloxacin. The ecological implication of enrofloxacin contamination in terrestrial environments is discussed.  相似文献   

2.
Phytoremediation is an emerging strategy to remediate soils contaminated with pollutants like explosives in which plants will uptake, degrade and/or accumulate pollutants. To implement this technology on a site contaminated with RDX, we chose rice, which is able to grow in lagoons, and we tested its ability to grow in soils with high levels of RDX and to decrease RDX concentrations in soil. Rice was grown for 40 days in soil contaminated with increasing [14C]RDX concentrations. Emergence and growth were not affected by RDX. Total chlorophyll content decreased with RDX concentrations of over 500 mg kg(-1). Amounts of chlorophyll were correlated with the appearance of necrosis in leaf extremities. After 40 days, rice translocated 89% of uptaken radioactivity to leaves with 90% in leaf extremities. Analyzes of leaf extracts showed that 95% of radioactivity was RDX in its parent form. Necrosis appears to be a phytotoxic symptom of RDX accumulation.  相似文献   

3.
组合型生态浮床对水体修复及植物氮磷吸收能力研究   总被引:3,自引:1,他引:3  
在天鹅湖水体中构建以水生植物和陆生喜水植物为实验植物,浮法控制器、水循环增氧系统和造浪-输送系统相集合的组合型生态浮床。在中试研究中,研究了其对天鹅湖上覆水和沉积物中营养物质的修复动态。结果表明,经过4个多月的组合型生态浮床生态修复,天鹅湖上覆水中TN、NH4+-N和TP的去除率分别达到61.92%、63.09%和80.0%,沉积物中TN和NH4+-N含量的去除率分别达到23.79%和37.04%,TP含量升高了43.71%;组合型生态浮床的5种浮床植物的氮磷累积量差异显著,再力花和美人蕉对氮磷的吸收速率显著高于菖蒲、薄荷和水稻,再力花和美人蕉对氮的吸收速率达到12.19 g/(m2.d)和7.90 g/(m2.d),对磷吸收分别达到0.81 g/(m2.d)和0.99 g/(m2.d)。美人蕉和再力花对氮磷的吸收量均是茎叶>根系,其中美人蕉茎叶氮、磷吸收量分别为根系的2.73倍和1.93倍,再力花分别为1.83倍和1.19倍,通过浮床系统植物水上部分的收割可以去除水体中的氮磷。  相似文献   

4.
Phytoremediation is of great interest to remediate soil contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT). The ability of 4 agronomic plants (maize, soybean, wheat and rice) to take up these explosives and their fate in plants were investigated. Plants were grown for 42 days on soil contaminated with [(14)C]RDX or [(14)C]TNT. Then, each part was analyzed for its radioactivity content and the percentage of bound and soluble residues was determined following extractions. Extracts were analyzed by radio-HPLC. More than 80% of uptaken RDX was translocated to aerial tissues, up to 64.5 mgg(-1) of RDX. By contrast, TNT was little translocated to leaves since less than 25% of uptaken TNT was accumulated in aerial parts. Concentrations of TNT residues were 20 times lower than for RDX uptake. TNT was highly metabolized to bound residues (more than 50% of radioactivity) whereas RDX was mainly found in its parent form in aerial parts.  相似文献   

5.
Antibiotics are extensively given to livestock to promote growth and reduce diseases. Therefore, animal manure often contains antibiotics. Once manure is applied to agricultural land to improve soil productivity, crops would be exposed to antibiotics which may persist in soils from a few to several hundred days. The objective of this study was to evaluate the uptake of gentamicin and streptomycin by carrot (Daucus carota), lettuce (Lactuca sativa) and radish (Rhaphanus sativus) from manure-amended soil. The treatments were 0, 0.5 and 1 mg of antibiotic kg?1 of soil. Two pot experiments were carried out in the greenhouse. The first was conducted on the three crops and the second exclusively on radish. In radish, the increase in the concentrations of gentamicin was significant between the 0 and both of 0.5 and 1.0 mg kg?1 treatments, but not significant between the 0.5 and 1.0 mg kg?1. The average values were 35.5, 60.0 and 57.4 μg kg?1 for the 0, 0.5 and 1 mg kg?1 rates, respectively. However, the increase in streptomycin concentration in radish was not significant between the three treatments, and the average values were, 12.1, 15.2 and 17.4 μg kg?1 for the 0, 0.5 and 1 mg kg?1 rates, respectively. In carrot roots and lettuce leaves no significant increase in the concentrations of gentamicin or streptomycin was observed between the treatments. The three crops absorbed relatively higher amounts of gentamicin (small molecule) than streptomycin (large molecule). Generally the levels of antibiotics in plant tissue increased with increasing the antibiotic concentration in the manure (1 mg kg?1 > 0.5 mg kg?1).  相似文献   

6.
Mercury uptake and accumulation by four species of aquatic plants   总被引:10,自引:0,他引:10  
The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.  相似文献   

7.
Simulating uptake and transport of TNT by plants using STELLA   总被引:1,自引:0,他引:1  
Ouyang Y  Huang CH  Huang DY  Lin D  Cui L 《Chemosphere》2007,69(8):1245-1252
Understanding the uptake and transport of soil organic contaminants by plants is crucial to a successful application of phytoremediation technique. This study investigated the removal of 2,4,6-trinitrotoluene (TNT) from a contaminated sandy soil by a poplar tree (Populus fastigiata) through the examinations of temporal variations of xylem water potential, leaf water transpiration, and root water and TNT uptake. A dynamic model for Uptake and Translocation of Contaminants from a Soil-Plant ecosystem (UTCSP), developed using the STELLA software package, was modified for the purpose of this study. The model was calibrated using laboratory measurements prior to its application. Simulation results showed that about 25% of TNT was removed from the soil by the poplar tree in 90 days. Simulations further revealed that the rates of water and TNT up taken by roots had a typical diurnal variation pattern: increasing during the day and decreasing during the night, resulting from daily variations of xylem water potentials that were caused by leaf water transpiration. In general, the storage of TNT mass in the roots decreased with time and occurred partially because of the low availability of soil TNT as time elapsed and partially because of the biodegradation of TNT in the plant tissues. This study suggests that the UTCSP model could be a useful tool for estimating phytoremediation of soil TNT by a plant.  相似文献   

8.
Zhou Q  Diao C  Sun Y  Zhou J 《Chemosphere》2012,86(10):994-1000
The growth, photosynthesis rate, and ultrastructure of Mirabilis jalapa L. as a newly-found remediation species under stress of nitrobenzene (NB) and its uptake and removal of NB by the plants were investigated. The results showed that M. jalapa plants could endure contaminated soils by lower than 10.0 mg NB kg−1 because there was no decrease in the total length of the plant roots, the maximum length of the hypocotyle, the length of the first seminal root, the height of the shoots and the dry biomass of the seedlings as well as the photosynthesis rate of the plants compared with those in the control. In particular, the growth of the plants could be significantly (< 0.01) enhanced by 0.1 mg NB kg−1 under unautoclaved and autoclaved soils. Ultrastructural observations on leaf cells of the plants found that these cells had smooth, clean and continuous cell membranes and cell walls, indicating that there was no obvious damage by NB in comparison with those in the control. Although the absorption of NB in shoots and roots of M. jalapa was weak, plant-promoted biodegradation of NB was considerable and the dominant contribution in the removal of NB from contaminated soils, suggesting the feasibility of M. jalapa applied to phytoremediation of NB contaminated soils.  相似文献   

9.
水生植物生态修复重金属污染水体研究进展   总被引:1,自引:0,他引:1  
综述了挺水植物、漂浮植物、浮叶植物、沉水植物等4种水生植物在生态修复重金属污染水体领域的进展,重点阐述了水生植物对重金属的蓄积效果以及生态修复的影响因素,总结了水生植物生态修复的适用范围和不足,并简要介绍了水体中的重金属通过水生植物进入食物网的生态过程,最后展望了提升水生植物蓄积重金属能力的研究方向。  相似文献   

10.
The risk assessment of genetically-modified plants pursuant to Annex II B of EU Directive 94/15/EC assumes that it is possible to infer the environmental impacts of a crop plant from its characteristics, so most of Annex II should also be applicable to conventional plants. To test this, we surveyed reports on the ecological impacts of the cultivation of non-transgenic crop plants with novel or improved traits and, in three cases, investigated whether Annex II B would have been adequate to indicate the effects. Such an assessment appears to be feasible only if the time frame on which it is based is short, so that long-term effects cannot be assessed. Secondly, the plant must be genetically homogenous which is not always granted, e.g. with forest-trees. Thirdly, the cultivation area must be defined. Differences in the behaviour of foreign plants between their original and cultivation habitats may be ecologically relevant and should be assessed. In the (few) cases where direct inference of the observed effects was possible from inherent traits, these effects often correlated with poor adaptation to local environmental conditions. The ecological impacts of traits that had been introduced in order to overcome poor adaptation may differ widely according to the way in which the traits are exploited. In practice, the effects of agricultural measures are more important than the effects of gene transfer and invasiveness, although the latter currently play a major role in risk assessment. In the light of these deliberations, a modification of Annex II B of EU Directive 94/15/EC is suggested.  相似文献   

11.
Prediction of phenanthrene uptake by plants with a partition-limited model   总被引:12,自引:0,他引:12  
The performance of a partition-limited model on prediction of phenanthrene uptake by a wide variety of plant species was evaluated using a greenhouse study. The model predictions of root or shoot concentrations for tested plant species were all within an order of magnitude of the observed values. Modeled root concentrations appeared to be more accurate than modeled shoot concentrations. The differences of simulated and experimented concentrations of phenanthrene in roots and shoots of three representative plant species, including ryegrass, flowering Chinese cabbage, and three-colored amaranth, were less than 81% for roots and 103% for shoots. Results are promising in that the alpha(pt) values of the partition-limited model for root uptake of phenanthrene correlate well with root lipid contents. Additionally, a significantly positive correlation is also observed between root concentration factors (RCFs, defined as the ratio of contaminant concentrations in root and in soil on a dry weight basis) of phenanthrene and root lipid contents. Results from this study suggest that the partition-limited model may have potential applications for predicting the plant PAH concentration in contaminated sites.  相似文献   

12.
Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 degrees C in combination with salinities of 0, 0.5, and 5 per thousand. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants.  相似文献   

13.
We evaluated the distribution of 15 metal ions, namely Al, Cd, Cu, Cr, Fe, La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr, in the soil of a contaminated site in Piedmont (Italy). This area was found to be heavily contaminated with Cu, Cr and Ni. The availability of these metal ions was studied using Tessier’s sequential extraction procedure: the fraction of mobile species, which potentially is the most harmful for the environment, was much higher than that normally present in unpolluted soils. This soil was hence used to evaluate the effectiveness of treatment with vermiculite to reduce the availability of the pollutants to two plants, Lactuca sativa and Spinacia oleracea, by pot experiments. The results indicated that the addition of vermiculite significantly reduces the uptake of metal pollutants by plants, confirming the possibility of using this clay in amendment treatments of metal-contaminated soils. The effect of plant growth on metal fractionation in soils was investigated. Finally, the sum of the metal percentages extracted into the first two fractions of Tessier’s protocol was found to be suitable in predicting the phytoavailability of most of the pollutants present in the investigated soil.  相似文献   

14.
Best EP  Geter KN  Tatem HE  Lane BK 《Chemosphere》2006,62(4):616-625
The objectives of this study were to provide data that can be used to predict exposure-based effects of RDX in aged soil on multiple endpoint organisms representing two trophic levels. These data can be used for defining criteria or reference values for environmental management and conducting specific risk assessment. Dose-response experiments formed the basis for the evaluation of toxic effects and transfer of contaminants from soil into two trophic levels. Long-term exposure tests were conducted to evaluate chronic, sublethal, toxicity and transfer of aged soil-based explosives, with RDX as main contaminant. In these tests, plants were exposed for 55 days in the greenhouse, biomass was determined and residues of explosives parent compounds and RDX metabolites were analyzed using HPLC techniques. Worms were exposed for 28 days (Eisenia fetida) and 42 days (Enchytraeus crypticus) in the laboratory, biomass and number were determined, and tissues were analyzed for explosives compounds. The plants tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of Lolium perenne was not significantly related to soil-RDX concentration, while biomass of Medicago sativa significantly increased. No screening benchmark for RDX in soil for plants was calculated, since concentrations up to 1,540 mg kg(-1) soil failed to reduce biomass by 20% as required for a LOEC. RDX, RDX-metabolite MNX, and accompanying HMX concentrations in plants were significantly related to concentrations in soil after 55 days of exposure (RDX: R(2) = 0.77-0.89; MNX R(2) = 0.53-0.77; HMX: R(2) = 0.67-0.71). The average bioconcentration factors (BCF) were for RDX 17 in L. perenne and 37 in M. sativa, and for HMX 2 in L. perenne and 44 in M. sativa. The worms also tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of E. fetida adults decreased with soil-RDX concentration, and a LOEC of 1,253 mg kg(-1) soil-DW was estimated. RDX concentrations in E. fetida were significantly related to concentrations in soil after 28-day exposure (R(2) = 0.88). The average BCF in E. fetida for RDX was 1. Because in response to exposure to RDX-contaminated soil the RDX concentrations in plants increased initially and decreased subsequently, while those in worms increased continuously, RDX in worm tissues may accumulate to higher concentrations than in plant tissues, regardless of the low average BCF for worms.  相似文献   

15.

Introduction  

The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions.  相似文献   

16.
The suitability of the salt-marsh species Halimione portulacoides, Scirpus maritimus, Juncus maritimus and an association of the last two for remediation of petroleum hydrocarbons (PHC) in soil was investigated. An outdoor laboratory experiment (microcosm-scale) was carried out using contaminated soil collected in a refinery, as a complement of another study carried out in the refinery environment (mesocosm-scale). Soil samples with old contamination (mainly crude oil) and with a mixture of the old and recent (turbine oil) contamination were tested. Studies in both micro- and mesocosm-scale provided results coherent in substance. The presence of S. maritimus caused removal of old contamination which was refractory to natural attenuation (after 7 months of exposure, efficiency was 13% when only old contamination was present and 40% when the soil also contained recent contamination). H. portulacoides (only included in the microcosm-scale study) revealed also potentiality for PHC remediation, although with less efficiency than S. maritimus. Degradation of recent contamination was also faster in the presence of plants (after 7 months: 100% in the presence of S. maritimus vs. 63% in its absence). As these species are common in salt marsh areas in Atlantic coast of Europe, it is probable they will be also useful for recovering coast sediments. In contrast, J. maritimus and association did not reveal capability to remove PHC from soil, the presence of J. maritimus inhibiting the capability of S. maritimus.  相似文献   

17.
Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics.  相似文献   

18.
Effects of DDT on the growth of crop plants   总被引:1,自引:0,他引:1  
The effects of DDT on the germination and growth of plants were studied using many crop species. Of the species tested, oil-rich seeds of plants, such as peanut (Arachis hypogaea) and mustard (Brassica juncea), were more prone to DDT induced inhibition of germination and subsequent plant growth than cereals, pulses and fibre crops, like rice (Oryza sativa), barley (Hordeum vulgare), mung bean Vigna radiata), pigeon pea (Cajanus cajan) and cotton (Gossypium hirsutum). Studies with (14)C labelled DDT showed that insecticide uptake by seeds was directly proportional to seed size. However, there was no direct relationship between DDT uptake by the seeds and its subsequent translocation to the growing regions or the degree of growth inhibition. Data suggest that oil content of the seeds per se has a bearing on the susceptibility or tolerance of a plant to DDT. It is suggested that lipids of the plant cell solubilize and disperse DDT in the cytoplasm, which, in turn, affects normal metabolism within the cell.  相似文献   

19.
Khan AG  Kuek C  Chaudhry TM  Khoo CS  Hayes WJ 《Chemosphere》2000,41(1-2):197-207
Phytoremediation is a site remediation strategy, which employs plants to remove non-volatile and immisible soil contents. This sustainable and inexpensive process is emerging as a viable alternative to traditional contaminated land remediation methods. To enhance phytoremediation as a viable strategy, fast growing plants with high metal uptake ability and rapid biomass gain are needed. This paper provides a brief review of studies in the area of phytoaccumulation, most of which have been carried out in Europe and the USA. Particular attention is given to the role of phytochelators in making the heavy metals bio-available to the plant and their symbionts in enhancing the uptake of bio-available heavy metals.  相似文献   

20.
Environmental Science and Pollution Research - Metalloids are a subset of particular concern to risk assessors and toxicologists because of their well-documented potential hazards to plant system....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号