首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Summary Chemical analysis of each individual leaf of fivePlantago lanceolata (Plantaginaceae) plants showed that iridoid glycoside content increased from undetectable in the oldest photosynthetic leaves to over 9% dry weight in the youngest leaves. The relative proportion of the two iridoid glycosides inP. lanceolata also changed with leaf age: older leaves had significantly more aucubin, whereas the youngest leaves had primarily or solely catalpol. Oviposition tests with femaleJunonia coenia (Nymphalidae) butterflies, showed that they laid most of their eggs on new leaves.  相似文献   

2.
Summary By means of gas chromatography, gas chromatographic coupled mass spectrometry, trail-following experiments and electrophysiological recordings from worker antennae, the major trail pheromone components from the hindgut of the formicine speciesCamponotus atriceps andC. floridanus were identified as 3,5-dimethyl-6-(1-methylpropyl)-tetrahydropyran-2-one and nerolic acid, respectively. The Dufour's gland contents of both species, investigated by gas chromatographic coupled mass spectrometry, show significant differences.Pheromones 104: Janssen E, Übler E, Bauriegel L, Kern F, Bestmann H-J, Attygalle AB, Steghaus-Kovacs S, Maschwitz U: Trail pheromone of the Ponerinae antLeptogenys peuqueti (Hymenoptera: Formicidae): a multicomponent mixture of related compounds  相似文献   

3.
Summary Our paper addresses field survivorship of first instar monarch butterfly larvae (Danaus plexippus L., Lep.: Danainae) in relation to the dual cardenolide and latex chemical defenses of the sand hill milkweed plant,Asclepias humistrata (Asclepiadaceae) growing naturally in north central Florida. Survival of first instar larvae in the field was 11.5% in the first experiment (15–20 April 1990), and dropped to 3.4% in the second experiment (20–30 April). About 30% of the larvae were found glued to the leaf surface by the milkweed latex. Predator exclusion of non-flying inverte-brates by applying tanglefoot to the plant stems suggested that the balance of the mortality was due to volant inverte-brates, or to falling and/or moving off the plants. Regression analyses to isolate some of the other variables affecting survivorship indicated that first instar mortality was correlated with (1) increasing cardiac glycoside concentration of the leaves, (2) increasing age of the plants, and (3) the temporal increase in concentration of cardiac glycosides in the leaves. The study also provided confirmatory data of previous studies that wild monarch females tend to oviposit onA. humistrata plants containing intermediate concentrations of cardiac glycosides. Cardiac glycoside concentration in the leaves was not correlated with that in the latex. The concentration of cardenolide in the latex is extremely high, constituting an average of 1.2 and 9.5% of the mass of the wet and dry latex, respectively. The data suggest that an increase in water content of the latex is compensated for by an influx of cardenolide with the result that the cardenolide concentration remains constant in the latex systems of plants that are growing naturally. We also observed first instar larvae taking their first bite of milkweed leaves in the field. In addition to confirming other workers findings that monarch larvae possess elaborate sabotaging behaviour of the milkweed's latex system, we discovered that several larvae on their first bite involuntarily imbided a small globule of latex and instantly became cataleptic. This catalepsis, lasting up to 10 min, may have been in response to the high concentration of cardenolide present in the latex ofA. humistrata, more than 10 times that in the leaves. The results of the present study suggest that more attention should be directed to plant chemical defenses upon initial attack by first instar insect larvae, rather than attempting correlations of plant chemistry with older larvae that have already passed the early instar gauntlet. The first bite of neonate insects may be the most critical moment for coping with the chemical defenses of many plants and may play a much more important role in the evolution of insect herbivory than has previously been recognized.  相似文献   

4.
Garden black ants,Lasius niger L., in a laboratory colony, attacked three species of live ladybirds found near their nest, killing the smaller two species. A second colony was offered artificial diets containing crushed ladybirds of two species, and the ants' choice of feeding site noted. Both the diets were aversive compared to control, but that containing 7spot,Coccinella septempunctata L., was more aversive than the diet containing 2spot,Adalia bipunctata L. The implications of this lesser protection for 2spots in terms of the chemical defence of the species are discussed.  相似文献   

5.
Malcolm  Stephen B. 《Chemoecology》1994,5(3-4):101-117
Summary The contribution of Miriam Rothschild to the monarch cardenolide story is reviewed in the light of the 1914 challenge by the evolutionary biologist, E.B. Poulton for North American chemists to explain the chemical basis of unpalatability in monarch butterflies and their milkweed host plants. This challenge had lain unaccepted for nearly 50 years until Miriam Rothschild took up the gauntlet and showed with the help of many able colleagues that monarchs are aposematically coloured because they sequester toxic cardenolides from milkweed host plants for use as a defence against predators. By virtue of Dr Rothschild's inspiration and industry, and subsequently that of Lincoln Brower and his colleagues, this tritrophic interaction has become a familiar paradigm for the evolution of chemical defences and warning colouration. We now know that the cardenolide contents of different milkweeds vary quantitatively, qualitatively and spatially, both within and among species and we are starting to appreciate the implications of such variation. However, as Dr Rothschild has pointed out in her publications, cardenolides have sometimes blinded us to reality and it is curious how little evidence there is for a defensive function to cardenolides in plants — especially against adapted specialists such as the monarch. Thus the review will conclude with a discussion of the significance of temporal variation and induction of cardenolide production in plants, the lethal plant defence paradox and an emphasis on the dynamics of the cardenolide-mediated interaction between milkweeds and monarch larvae.  相似文献   

6.
Summary. The effect of rearing larvae of Trichoplusia ni on individual feeding deterrents or on binary mixtures of deterrents on their subsequent gustatory sensitivity was measured in paired choice leaf disc bioassays. Our working hypothesis was that mixtures of antifeedants (pure allelochemicals) would mitigate decreased feeding deterrent response following prolonged exposure in this generalist herbivore. Neonate larvae were reared on cabbage leaves treated with individual feeding deterrents (digitoxin, thymol, toosendanin or xanthotoxin), or with binary mixtures of these until the third instar. Feeding deterrent responses to each antifeedant or mixture was then determined in a leaf disc choice bioassay. All of the mixtures produced additive deterrence when presented to naïve larvae. Larvae reared on individual antifeedants showed a significantly decreased feeding deterrent response (except to digitoxin), whereas larvae reared on binary mixtures of antifeedants did not show a decreased feeding deterrent response to any of them. Such mixtures were synergistic in terms of their feeding deterrence to experienced larvae. Our experiment supports the hypothesis (Jermy 1986) that mixtures of deterrents can prevent decreased feeding deterrent response following prolonged exposure, and provides one explanation for the multiplicity of chemical defenses found in many plants.  相似文献   

7.
Summary. Broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae) exhibits a specific phoretic relationship with whiteflies. Under field conditions most broad mites, caught in sticky traps, are attached to whiteflies. Under laboratory conditions, attachment occurs equally well in the dark and light. Mites do not differentiate between the sexes of their phoretic host Bemisia tabaci. However, mite attachment to B. tabaci is greatly diminished by washing the host with various organic solvents, chloroform in particular. The effect of whitefly waxy particles on broad mite behavior was studied using wax from the whitefly Aleyrodes singularis and from the mealybug Planococcus citri. Broad mites were not only attracted specifically to the A. singularis waxy particles-treated leaf areas but were also attached to leaf trichomes in this area. The results of this study suggests the importance of olfactory cues from the whitefly waxy particles in the recognition process of the phoretic host and/or the induction of the attachment behavior to whitefly legs or leaf trichomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号