首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many organisms live in crowded groups where social density affects behavior and fitness. Social insects inhabit nests that contain many individuals where physical interactions facilitate information flow and organize collective behaviors such as foraging, colony defense, and nest emigration. Changes in nest space and intranidal crowding can alter social interactions and affect worker behavior. Here, I examined the effects of social density on foraging, scouting, and polydomy behavior in ant colonies—using the species Temnothorax rugatulus. First, I analyzed field colonies and determined that nest area scaled isometrically with colony mass—this indicates that nest area changes proportionally with colony size and suggests that ants actively control intranidal density. Second, laboratory experiments showed that colonies maintained under crowded conditions had greater foraging and scouting activities compared to the same colonies maintained at a lower density. Moreover, crowded colonies were significantly more likely to become polydomous. Polydomous colonies divided evenly based on mass between two nests but distributed fewer, heavier workers and brood to the new nests. Polydomous colonies also showed different foraging and scouting rates compared to the same colonies under monodomous conditions. Combined, the results indicate that social density is an important colony phenotype that affects individual and collective behavior in ants. I discuss the function of social density in affecting communication and the organization of labor in social insects and hypothesize that the collective management of social density is a group level adaptation in social insects.  相似文献   

2.
Dominance relationships among species play a major role in the structure of animal communities. Yet, dominant species with different trade-offs in resource exploitation and monopolization could affect community structure in variable ways. In ants, dominant species could be classified into either behavioral dominants that exhibit territorial aggression or numerical dominants that exhibit high biomass or frequency of occurrence. While each class of dominance has generally been found to negatively affect the foraging activity of species in ant communities, the concurrent effect of both classes of species has never been tested. Here, we examined the effects of two behaviorally dominant species, Crematogaster inermis and Monomorium salomonis, and a numerically dominant species, Messor arenarius, on the foraging behavior of seed-eating species in a desert ant assemblage. In a 1-year study, the foraging activity of the ant species was assessed using seed baits, which were sampled during night and day. While the numerically dominant species exhibited high foraging efficiency and negatively affected the ability of other seed-eating species to obtain seeds, significantly more seeds remained at baits that were occupied the previous night by each of the two behaviorally dominant species, possibly due to aggressive exclusion of M. arenarius foragers from the baits. This exclusion also facilitated greater foraging activity of the seed-eating species. Our results demonstrate how these two types of dominance could differently affect the foraging activity of ant species in the community.  相似文献   

3.
Insect societies are often confronted with choices among several options such as food sources of different richness or potential nest sites with different qualities. The mechanisms by which a colony as a whole evaluates these situations and takes the appropriate decision are of crucial importance for its survival. Here we studied how collective decisions arise from individual behaviors when a group of workers of the ant Messor barbarus is given a choice between two aggregation sites. Two hundred ants were introduced into an arena and given a choice between two tubes connected to the arena. The tubes had different physical properties: dry and transparent (termed as dry), humid and transparent (termed as humid), or dry and dark (termed as dark). After 30 min, most ants were found to be aggregated in a humid tube when paired with a dry tube, or in a dark tube when paired with a humid one. When two humid tubes were in competition, ants aggregate more in one of the sites. The choice of ants was consistent throughout experiments. An analysis of individual behaviors shows that the probability of an ant recruiting and the intensity of its trail-laying behavior strongly depend on the quality of the tubes. Our study suggests that the selection of an aggregation site does not require that individual ants directly compare sites, but rather relies on the synergy between amplification processes involving recruitment by chemical trails, and a modulation of the individual resting time in a site as a function of its population.Communicated by L. Sundström  相似文献   

4.
Summary The honey bee colony presents a challenging paradox. Like an organism, it functions as a coherent unit, carefully regulating its internal milieu. But the colony consists of thousands of loosely assembled individuals each functioning rather autonomously. How, then, does the colony acquire the necessary information to organize its work force? And how do individuals acquire information about specific colony needs, and thus know what tasks need be performed? I address these questions through experiments that analyze how honey bees acquire information about the colony's need for pollen and how they regulate its collection. The results demonstrate features of the colony's system for regulating pollen foraging: (1) Pollen foragers quickly acquire new information about the colony's need for pollen. (2) When colony pollen stores are supplemented, many pollen foragers respond by switching to nectar foraging or by remaining in the hive and ceasing to forage at all. (3) Pollen foragers do not need direct contact with pollen to sense the colony's change of state, nor do they use the odor of pollen as a cue to assess the colony's need for pollen. (4) Pollen foragers appear to obtain their information about colony pollen need indirectly from other bees in the hive. (5) The information takes the form of an inhibitory cue. The proposed mechanism for the regulation of pollen foraging involves a hierarchical system of information acquisition and a negative feedback loop. By taking advantage of the vast processing capacity of large numbers of individuals working in parallel, such a system of information acquisition and dissemination may be ideally suited to promote efficient regulation of labor within the colony. Although each individual relies on only limited, local information, the colony as a whole achieves a finely-tuned response to the changing conditions it experiences.  相似文献   

5.
Summary A combination of behavioral and chemical analyses was used to investigate the nature of nestmate recognition cues and the effects of worker age and social experience on these cues in the ant Camponotus floridanus. Five categories of workers were tested: foragers, 5-day old and 0-day old callows, 5-day old and 0-day old naive callows. Bioassays consisted of introductions of dead workers from these categories into their own colonies or into an alien colony after the following treatments: 1) killed by freezing, 2) solvent-washed, 3) solvent-washed and coated with a nestmate soak, 4) solvent-washed and coated with a non-nestmate soak. Soaks were obtained from individual ants immersed in hexane and were applied individually to washed workers from the same category. Soaks were analyzed by gas chromatography (GC) and compared by multivariate analyses. Freeze-killed workers from each category elicited more aggressive behavior in the alien colony than in its own. By comparing GC profiles, a worker from any category can be assigned to its colony of origin. Thus all studied worker categories are colony-specific. Solvent-washed ants did not induce more aggressive behaviors in the alien colony than in their own, but they induced significantly less aggressivity in an alien colony than non-treated dead ants from the same category. Washed ants indced more aggressive behaviors when coated with a soak from a different colony as opposed to a soak from the colony in which they were introduced. The combination of behavioral and chemical results lead to the following conclusions: 1) Information contained in soak derived from workers was sufficient to allow nestmate recognition. 2) Nestmate recognition cues, and consequently the recognition response displayed to their bearer, change with age. 3) Social experience is necessary to develop or acquire a colony-specific label. The role of age and social experience on nestmate recognition in social Hymenoptera is discussed.  相似文献   

6.
In honeybees, as in other highly eusocial species, tasks are performed by individual workers, but selection for worker task phenotypes occurs at the colony level. We investigated the effect of colony-level selection for pollen storage levels on the foraging behavior of individual honeybee foragers to determine (1) the relationship between genotype and phenotypic expression of foraging traits at the individual level and (2) how genetically based variation in worker task phenotype is integrated into colony task organization. We placed workers from lines selected at the colony level for high or low pollen stores together with hybrid workers into a common hive environment with controlled access to resources. Workers from the selected lines showed reciprocal variation in pollen and nectar collection. High-pollen-line foragers collected pollen preferentially, and low- pollen-line workers collected nectar, indicating that the two tasks covary genetically. Hybrid workers were not intermediate in phenotype, but instead showed directional dominance for nectar collection. We monitored the responses of workers from the selected strains to changes in internal (colony) and external (resource) stimulus levels for pollen foraging to measure the interaction between genotypic variation in foraging behavior and stimulus environment. Under low-stimulus conditions, the foraging group was over-represented by high-pollen-line workers. However, the evenness in distribution of the focal genetic groups increased as foraging stimuli increased. These data are consistent with a model where task choice is a consequence of genetically based response thresholds, and where genotypic diversity allows colony flexibility by providing a range of stimulus thresholds. Received: 3 May 1999 / Received in revised form: 22 December 1999 / Accepted: 23 January 2000  相似文献   

7.
Ant colonies are factories within fortresses (Oster and Wilson 1978). They run on resources foraged from an outside world fraught with danger. On what basis do individual ants decide to leave the safety of the nest? We investigated the relative roles of social information (returning nestmates), individual experience and physiology (lipid stores/corpulence) in predicting which ants leave the nest and when. We monitored Temnothorax albipennis workers individually using passive radio-frequency identification technology, a novel procedure as applied to ants. This method allowed the matching of individual corpulence measurements to activity patterns of large numbers of individuals over several days. Social information and physiology are both good predictors of when an ant leaves the nest. Positive feedback from social information causes bouts of activity at the colony level. When certain social information is removed from the system by preventing ants returning, physiology best predicts which ants leave the nest and when. Individual experience is strongly related to physiology. A small number of lean individuals are responsible for most external trips. An individual’s nutrient status could be a useful cue in division of labour, especially when public information from other ants is unavailable.  相似文献   

8.
A territorial male can shift the location of its territory from year to year in order to increase its quality. The male can base its decision on environmental cues or else on its breeding experiences (when territory shift is caused by breeding failure in previous seasons). We tested these possible mechanisms of territory choice in the sedge warbler (Acrocephalus schoenobaenus), a territorial migrating passerine that occupies wetlands. This species bases its territory choices on an environmental cue: tall wetland vegetation cover. We found that the magnitude of territory quality improvement between seasons (measured as the area of tall wetland vegetation) increased throughout the early stages of a male's breeding career as a result of territory shifts dependent on the earliness of arrival. The distance the territory was shifted between seasons depended negatively on the previous year's territory quality and, less clearly, on the previous year's mating success. On the other hand, previous mating or nesting success had no influence on territory quality improvement between seasons as measured in terms of vegetation. The results imply that tall wetland vegetation is a long-term, effective environmental cue and that a preference for territories in which this type of landcover prevails has evolved into a rigid behavioral mechanism, supplemented by short-term individual experiences of breeding failure.  相似文献   

9.
In this paper, we used the food-correlated search behavior observed in foraging ants returning to a previously rewarding site to study information transfer during recruitment in the ant Lasius niger. We hypothesized that, if information about the characteristics of the food is conveyed during recruitment, food-correlated search tactics should also be observed in recruited workers. Our results show that the characteristics of the trajectories of recruited workers are comparable to those of scout ants returning to a site or prior food find and depend more on the type (prey/sugar) than on the quality (sugar concentration) of the food discovered by the scouts. Independent of sugar concentration, workers recruited to a source of sugar search with a greater sinuosity than workers recruited to a prey. Experimental manipulation of the recruitment signals (chemical trail and contact between ants) shows that the trail pheromone laid down by recruiting ants does not play a role in the modification of trajectory sinuosity. This change appears to be most likely triggered by a direct perception of the residue of sugar smeared on the body of the recruiting workers coming back to the nest.Communicated by J. Heinze  相似文献   

10.
Intermittent breeding (skipping a breeding season) can be the result of an adaptive decision by a focal individual, trading current reproductive success in favour of future reproductive success (residual reproductive value hypothesis). In contrast, an individual can also be forced by conspecifics to abandon the familiar breeding site and refrain from breeding due to lack of suitable alternative breeding sites or mates (competition hypothesis). I studied intermittent breeding in the territorial and site-faithful Eurasian oystercatcher Haematopus ostralegus, using a dataset covering 20 years. Intermittent breeding (in total 86 cases) occurred among breeders that formerly bred in high- as well as low-quality territories. The main factor associated with intermittent breeding in high-quality sites was death of a mate, while in low quality sites divorce was the most prominent factor. In 93% of the cases birds were forced to cease breeding due to pressure from conspecifics consistent with the competition hypothesis. There was no association between intermittent breeding and promotion to a territory of better quality. Instead, oystercatchers returned to breeding habitat of similar quality and at a very close distance (median distance 128 m) from the previous breeding location. Breeding absences lasted on average 2.4 years, with a maximum of 9 years, and the quality of the territory obtained after the absence varied with the duration of it. Birds who re-bred in a high-quality territory acquired this on average faster than those that re-bred in a low-quality territory, indicating that birds in high-quality sites are better competitors.  相似文献   

11.
Summary Individual seed harvester ants (Pogonomyrmex) have been shown to specialize on specific seed types. We examined possible mechanisms for seed specialization and tested whether fidelity to food type limits the foraging decisions of individual western harvester ants, Pogonomyrmex occidentalis. The seed selection regimes of individually marked ants foraging at piles of two seed types were described and related to differences in seed quality and colonial dietary history. Individual foraging choices were affected by multiple factors, including seed caloric rewards, the previous seed selected, and the dietary history of the colony. Individual seed choices generally converged on the most energetically profitable species, suggesting that foragers exhibit labile preference. However, for a portion of the foragers, seed specialization was also partially due to constancy, defined as a tendency to select seed species that were previously collected. When colonies were presented with one seed type for 1 h and then were offered a mix of that seed and a novel seed type, individuals showed a strong preference for the novel seeds. Such rapid changes in seed preference argue strongly that individual P. occidentalis ants are highly flexible in seed choice and that resource assessment by these ants is more complex than simple maximization of net energetic return.Offprint requests to: J.H. Fewell at the current address  相似文献   

12.
Variability exists among worker honey bees for components of division of labor. These components are of two types, those that affect foraging behavior and those that affect life-history characteristics of workers. Variable foraging behavior components are: the probability that foraging workers collect (1) pollen only; (2) nectar only; and (3) pollen and nectar on the same trip. Life history components are: (1) the age the workers initiate foraging behavior; (2) the length of the foraging life of a worker; and (3) worker length of life. We show how these components may interact to change the social organization of honey bee colonies and the lifetime foraging productivity of individual workers. Selection acting on foraging behavior components may result in changes in the proportion of workers collecting pollen and nectar. Selection acting on life-history components may affect the size of the foraging population and the distribution of workers between within nest and foraging activities. We suggest that these components define possible sociogenic pathways through which colony-level natural selection can change social organization. These pathways may be analogous to developmental pathways in the morphogenesis of individual organisms because small changes in behavioral or life history components of individual workers may lead to major changes in the organizational structure of colonies. Correspondence to: R.E. Page, Jr.  相似文献   

13.
Behavior in eusocial insects likely reflects a long history of selection imposed by parasites and pathogens because the conditions of group living often favor the transmission of infection among nestmates. Yet, relatively few studies have quantified the effects of parasites on both the level of individual colony members and of colony success, making it difficult to assess the relative importance of different parasites to the behavioral ecology of their social insect hosts. Colonies of Polybia occidentalis, a Neotropical social wasp, are commonly infected by gregarines (Phylum Apicomplexa; Order Eugregarinida) during the wet season in Guanacaste, Costa Rica. To determine the effect of gregarine infection on individual workers in P. occidentalis, we measured foraging rates of marked wasps from colonies comprising both infected and uninfected individuals. To assess the effect of gregarines on colony success, we measured productivity and adult mortality rates in colonies with different levels of infection prevalence (proportion of adults infected). Foraging rates in marked individuals were negatively correlated with the intensity of gregarine infection. Infected colonies with high gregarine prevalence constructed nests with fewer brood cells per capita, produced less brood biomass per capita, and, surprisingly, experienced lower adult mortality rates than did uninfected or lightly infected colonies. These data strongly suggest that gregarine infection lowers foraging rates, thus reducing risk to foragers and, consequently, reducing adult mortality rates, while at the same time lowering per-capita input of materials and colony productivity. In infected colonies, queen populations were infected with a lower prevalence than were workers. Intra-colony infection prevalence decreased dramatically in the P. occidentalis population during the wet season.An erratum to this article can be found at  相似文献   

14.
Summary The honey ant Myrmecocystus mimicus is a scavenger, forages extensively on termites, collects floral nectar, and tends homoptera. Individual foragers of M. mimicus usually disperse in all directions when leaving the nest, but there are also groups of foragers that tend to swarm out of the nest primarily in one direction. Such massive departues are usually at irregular intervals, which may last several hours. The results of field and laboratory experiments suggest that these swarms of foragers are organized by a group recruitment process, during which recruiting scout ants lay chemical orientation trails with hindgut contents and simultaneously stimulate nestmates with a motor display and secretions from the poison gland. Usually these columns travel considerable distances (4–48 m) away from the nest, frequently interfering with the foraging activity of conspecific neighboring colonies.To prevent a neighboring colony from access to temporal food sources or to defend spatiotemporal borders, opposing colonies engage in elaborate display tournaments. Although hundreds of ants are often involved during these tournaments almost no physical fights occur. Instead, individual ants confront each other in highly sterotyped aggressive displays, during which they walk on stilt legs while raising the gaster and head. Some of the ants even seem to inflate their gasters so that the tergites are raised and the whole gaster appears to be larger. In addition, ants involved in tournament activities are on average larger than foragers.The dynamics of the tournament interactions were observed in several colonies over several weeks-mapping each day the locations of the tournaments, the major directions of worker routes away from the nest, and recording the general foraging activities of the colonies. The results indicate that a kind of dominance order can occur among neighboring colonies. On the other hand, often no aggressive interactions among neighboring colonies can be observed, even though the colonies are actively foraging. In those cases the masses of foragers of each colony depart in one major direction that does not bring them into conflict with the masses of foragers of a neighboring colony. This stability, however, can be disturbed by offering a new rich food source to be exploited by two neighboring colonies. This invariably leads to tournament interactions.When a colony is considerably stronger than the other, i.e., with a much larger worker force, the tournaments end quickly and the weaker colony is raided. The foreign workers invade the nest, the queen of the resident colony is killed or dirven off, while the larvae, pupae, callow workers, and honey pot workers are carried or dragged to the nest of the raiders. From these and other observations we conclude that young M. mimicus queens are unlikely to succeed in founding a colony within approximately 3 m of a mature M. mimicus colony because they are discovered and killed, or driven off by workers of the resident colony. Within approximately 3–15 m queens are more likely to start colonies, but these incipient groups run a high risk of being raided and exterminated by the mature colony.Although populations of M. mimicus and M. depilis tend to replace each other, there are areas where both species overlap marginally. Foraging areas and foraging habitats of both species also overlap broadly, but we never observed tournament interactions between M. mimicus and M. depilis.The adaptive significance of the spatiotemporal territories in M. mimicus is discussed.  相似文献   

15.
The evolution of colony size in social insects is influenced by both extrinsic and colony-intrinsic factors. An important intrinsic trait, per-capita productivity, often declines in larger colonies. This pattern, known as Michener’s paradox, can limit the growth of insect societies. In this study, we first describe this problem, survey its occurrence across different ant species, and present a case study of eight cavity-dwelling ants with very small colony sizes. In these species, colonies might never reach sizes at which per-capita productivity decreases. However, in six out of the eight focal species, per-capita productivity did decline with increasing size, in accordance with other studies on per-capita productivity in ants. Several mechanisms, such as resource availability or nest-site limitation, may explain the decrease in per-capita productivity with increases in colony size in our focal species. In these central-place foragers, the individual foraging mode is expected to lead to an increase in travel time as colonies grow. We suggest that polydomy, the concomitant occupation of several nest sites, could serve as a potential strategy to overcome this limitation. Indeed, for one species, we show that polydomy can help to circumvent the reduction in productivity with increasing colony size, suggesting that limited resource availability causes the observed decrease in per-capita productivity. Finally, we discuss the influence of other factors, such as the nesting ecology and colony homeostasis, on the evolution of colony size in these cavity-dwelling ants.  相似文献   

16.
Many ant species are polydomous, forming multiple spatially segregated nests that exchange workers and brood. However, why polydomy occurs is still uncertain. We investigated whether colonies of Crematogaster torosa form new polydomous nests to better exploit temporally stable food resources. Specifically, we tested the effect of food presence or absence and distance on the likelihood that colonies would form a new nest. Because this species also forms little-known structures that house only workers without brood (outstations), we also compared the function of this structure with true nests. Laboratory-reared colonies were connected to a new foraging arena containing potential nest sites with or without food for 4 months. When food was present, most colonies formed polydomous nests nearby and the remainder formed outstations. When food was absent, the behavior of colonies differed significantly, frequently forming outstations but never polydomous nests. Distance had no effect on the type of structure formed, but when food was present, a larger proportion of the workforce moved shorter distances. Workers often fortified the entrances to both structures and used them for storage of dried insect tissue (“jerky”). In an investigation of spatial fidelity, we found that workers on the between-nest trail were associated with the original nest, whereas workers collecting food were more likely to be associated with the new nest or outstation. C. torosa appears to have a flexible colony structure, forming both outstations and polydomous nests. Polydomous nests in this species were associated with foraging and were only formed near food resources.  相似文献   

17.
Summary The emigration and raiding behavior of the SE Asian ponerine ant Leptogenys sp. 1, which resembles L. mutabilis, were observed in the field (Ulu Gombak, Malaysia). The ants formed monogynous colonies that consisted of up to 52 100 workers. The bivouac sites of this species were found in leaf litter, rotten logs, ground cavities, etc., and were rarely modified by the ants. The colonies stayed in these temporary nests for several hours to 10 days; afterwards, they moved to a new nest site. The emigration distances ranged from 5–58 m. Since nest changing takes place at irregular intervals, and pupae and larvae are always present in the nest relocations of Leptogenys sp. 1, the emigration behavior is not linked to a synchronized brood development. Leptogenys sp. 1 is a nocturnal forager; in our study, up to 42 600 workers participated in each raid. The ants move forward on a broad front; behind the swarm a fan-shaped network of foraging columns converges to form a main trunk trail. A new system of foraging trails is developed in each raid. The workers search for their prey collectively; they attack and retrieve the booty together. The diet of Leptogenys sp. 1 consists mainly of arthropods. Army ant behavior is characterized by (1) formation of large monogynous colonies, (2) frequent emigrations, and (3) mass raids in which all foraging activities are carried out collectively. Since Leptogenys sp. 1 performs these typical army ant behavior patterns, this species represents the army ant ecotype. However, this species differs considerably from army ant species that have synchronized broods and huge colonies with dichthadiiform queens.Dedicated to Professor Dr. M. Lindauer on the occasion of his 70th birthday  相似文献   

18.
Some territorial animals exhibit a form of social recognition, commonly termed the "dear enemy effect", in which territory residents display lower levels of aggression toward familiar neighbors compared to unfamiliar individuals who are non-territorial "floaters". Despite the widespread occurrence of territorial social systems and use of acoustic signals for communication in anuran amphibians, only two previous studies have demonstrated vocally mediated dear enemy behavior in a territorial frog. In this study, I conducted neighbor-stranger discrimination playback experiments in a third species of territorial frog, the strawberry dart-poison frog, Dendrobates pumilio (Anura, Dendrobatidae). In the first experiment (n=24), I broadcast the calls of a subject's nearest neighbor and the calls of an unfamiliar individual from the approximate midpoint between the subject's and the neighbor's territories. Although males responded to the stimuli, they did not exhibit differential responses to the calls of neighbors and strangers. In a second experiment (n=22), I broadcast the calls of a neighbor and a stranger to subjects through a speaker located in the approximate center of the neighbor's territory. Males also responded to the playback, although less intensely than in the first experiment, but no discrimination between the calls of neighbors and strangers was found. Thus, territorial males of the strawberry dart-poison frog appear not to discriminate behaviorally between the advertisement calls of neighbors and strangers. Several proximate and ultimate-level hypotheses for this lack of vocally mediated neighbor-stranger discrimination are discussed.Communicated by T. Czeschlik  相似文献   

19.
The energetic state of an individual is a fundamental driver of its behavior. However, an individual in a eusocial group such as the honeybees is subject to the influence of both the individual and the colony energetic states. As these two states are normally coupled, it has led to the predominant view that behaviors, such as foraging, are dictated by the colony state acting through social regulatory mechanisms. Uncoupling the energetic state of an individual honeybee from its colony by feeding it with a non-nutritious sugar, we show that energetically stressed bees in a colony with full food stores do not consume this food to meet their energetic shortfall but instead compensate by first reducing their activity level and then by increasing their foraging rate. This suggests that foraging in eusocial groups is still partly under the regulatory control of the energetic state of the individual and supports the notion that regulatory mechanisms in solitary insects have been co-opted to drive altruistic behavior in eusocial insects. The observation that energetically stressed bees also experience higher mortality during foraging also suggests that energetic stress mediated by a variety of factors can be a common mechanism that underlies the recent observation of bees disappearing from their colonies. We also discuss how nutritional imbalance in a social insect individual can alter its behavior to influence colony life history.  相似文献   

20.
Cooperation in animal social groups may be limited by the threat of free riding, the potential for individuals to reap the benefits of other individuals actions without paying their share of the costs. Here we investigate the factors that influence individual contributions to group-level benefits by studying individual participation in territorial defense among female ringtailed lemurs (Lemur catta). To control for potentially confounding factors, particularly group size, we studied two semi-free-ranging groups at the Duke University Primate Center. First, we used a combination of experimental and observational methods to investigate the costs and benefits of territorial defense for individual lemurs. We found three indications of costs: physical contact occurred during inter-group encounters, participation in territorial defense was negatively correlated with ambient temperature, and rates of self-directed behaviors increased during encounters. Benefits were more difficult to quantify, but observational and experimental tests suggested that individuals shared the gains of territorial defense by foraging in defended territories. Thus, during experiments in which one of the groups was prevented from defending its territory, the free-ranging group made more frequent incursions into the other groups territory. Second, we examined variation in participation in territorial defense. Individuals varied significantly in their rates of aggression and genital marking during inter-group encounters. The extensive variation documented among individuals was partially accounted for by dominance rank, kinship and patterns of parental care. However, we found no evidence to suggest that participation was enforced through punishment (policing) or exchange of benefits involving grooming. In conclusion, this study provides further insights into cooperative behavior in mammalian social groups by revealing how the costs and benefits of territoriality influence patterns of individual participation in the context of shared (collective) goods.Communicated by P. Kappeler  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号