首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
为研究环境风速对液化天然气(LNG)泄漏扩散过程的影响,采用Fluent建立LNG连续泄漏计算流体力学模型,开展不同风速下LNG泄漏扩散过程的数值模拟研究。结果表明,LNG泄漏扩散分为扩散初期、扩散中期、扩散后期3个阶段,扩散过程中LNG从低温重气逐渐转变成轻质气体。环境风速对气云的扩散主要体现在:低于5级风时,云团以两侧卷吸为主,气云表现为"叶状分叉"、中间低两端高,此时气云横风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而增大;而高于5级风时,云团以顶部卷吸为主,气云表现为云团坍塌、中间高两端低,此时气云垂直风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而减小。初步建立了LNG蒸气云爆炸风险范围与冻伤区域和泄漏时间、环境风速的函数关系,可为爆炸风险区域和低温冻伤区域的预测提供理论支撑。  相似文献   

2.
为研究环氧乙烷在不同因素影响下扩散规律及其毒性影响范围,以某厂环氧乙烷储罐泄漏事故为背景,对环氧乙烷泄漏扩散规律进行模拟分析。运用FLUENT软件,模拟环氧乙烷随泄漏速率、自然风速和地面粗糙度变化时的动态扩散变化规律。模拟结果表明:1)泄漏速率越快,毒害范围越大,并且在一定条件下,泄漏速率每增加2.5 kg/s,特别严重毒害范围(灰区)最远距离会在下风向增加60~80 m,比较严重毒害范围(黑区)最远距离会在下风向增加20~40 m;2)自然风速越快,灰区范围会变得越来越小,但黑区的毒害范围会扩散得更大,当风速为8 m/s时达到最大值,风速超过8 m/s时,风速的增加反而会使黑区范围变小;3)地面粗糙度越大,对环氧乙烷扩散的阻碍作用越大,黑区范围变小,但地面粗糙度大于4 m后,其对扩散作用的影响与4 m时近乎一致。研究结果对环氧乙烷储罐泄漏事故的预防,应急疏散和救援具有重要的指导意义。  相似文献   

3.
范林盛  刘勇  李润求  施星宇  周荣义 《安全》2022,43(1):41-47,52
为研究液氯槽罐车在道路运输过程中,罐体泄漏孔高度对液氯泄漏扩散过程的影响,本文基于计算流体力学软件Fluent,建立不同高度泄漏孔对应的罐体气相、液相空间泄漏的理论模型,计算不同泄漏模型的泄漏量,研究不同风向、风速、泄漏孔径对氯气泄漏扩散过程的影响。结果表明:风向对2种泄漏模式的扩散范围影响不显著;风速较小时,气相空间泄漏的致命范围大于液相泄漏;风速较大时,液相空间泄漏的致命范围远远大于气相空间;同时,两者受风速的影响具有相似点,风速越大泄漏扩散相对稳定后的氯气浓度值越低;气相、液相泄漏模式的致命范围均随泄漏孔径的增大而增大。研究成果可为液氯槽罐车泄漏事故应急救援、应急处置提供依据。  相似文献   

4.
基于FLUENT软件的物质传输模块建立了氯气泄漏扩散模型.考虑绿化带对氯气泄漏扩散的影响,针对不同的绿化带高度、泄漏速度和风速对氯气泄漏扩散进行了数值模拟.结果表明,绿化带对氯气的泄漏扩散有阻碍作用;绿化带高度越高越容易减缓危险区域在水平方向的传输;泄漏速度增加,危险区域的浓度值增高;风速增加,危险区域的浓度值减小,而...  相似文献   

5.
基于液化石油气的特点,建立了有限空间内部发生泄漏扩散的物理模型,模拟了液化石油气泄漏扩散的过程,通过模拟结果分析其扩散规律,并对比当泄漏孔形状分别为正方形、圆形、三角形时液化石油气扩散过程的变化以及对所形成的的爆炸危险区域的影响。监测点1(0.8,0.3,0),点2(2.4,0.3,2.5),点3(0,0.3,1.5),点4(2,0.3,3)的浓度变化,找出报警器的最佳安放位置。结果表明:泄漏时间相同,丙烷的扩散范围从大到小依次为三角形孔口、圆形孔口、正方形孔口,爆炸危险区域也与泄漏孔形状有关,三角形孔口的危险区域范围最广,其次是圆形泄漏孔,正方形泄漏孔的范围最小,点1处的丙烷浓度增长幅度较大,浓度较高,可以更早达到报警浓度。  相似文献   

6.
有害物质泄漏扩散的数值模拟   总被引:5,自引:1,他引:5  
有害物质泄漏是一种常见事故.利用高斯公式和三维有限元建立有害物质泄漏扩散数学模型,估测有害物质泄漏扩散的危害范围和泄漏物质扩散过程中浓度的大小,相应的数学模型可作为泄漏事故安全保障工作中预防为主的科学依据,从而为可能发生的事故进行预测预警.  相似文献   

7.
高压管道天然气泄漏扩散过程的数值模拟   总被引:3,自引:2,他引:3  
采用CFD模型的方法对高压管道内的天然气泄漏和扩散过程进行了数值模拟。其结果表明,从高压管道泄出的天然气在大气中主要表现为高速射流的泄漏过程和随后的扩散过程。在泄漏过程中,天然气在泄漏口附近为欠膨胀射流,整个泄漏过程具有一定的高度;在扩散过程中,天然气在浮力作用下以向上扩散的形式发展。研究了不同环境风速对扩散过程的影响,较大的风速可以使天然气向下风方向更远的距离扩散,从而增大了天然气爆炸危险浓度的范围。研究结果可  相似文献   

8.
9.
中压天然气管道泄漏扩散模拟研究   总被引:1,自引:1,他引:0  
建立了埋地中压天然气管道发生泄漏时时的数学模型,将土壤视为各向同性的多孔介质,采用FLUENT对天然气在土壤中的扩散规律及浓度分布进行模拟,分析不同时刻地表的危险区域范围,并对比了不同管道压力、泄漏孔径大小、泄漏位置等工况下危险半径随时间的变化。结果表明:管道压力越大,泄漏的体积流量越大,同一时间危险范围越大;相同的泄漏压力下,泄漏孔径对危险半径没有很大影响;不同泄漏孔位置,泄漏初期向上开口时危险半径最大,一段时间后向下开口危险半径最大。  相似文献   

10.
为更好地探索多相混合物的爆炸特性,以铝粉、乙醚、空气为研究对象,基于20 L球型爆炸罐建立三维计算模型,对气固两相和气液固三相混合物的分散过程进行数值模拟,以分析不同多相混合物分散过程的差异,并为测量多相混合物爆炸下限时的点火延迟时间设定提供参考。监测分析铝粉浓度粒子分布、流场内部湍流动能以及液相体积百分数等的演化过程,讨论混合物分散效果的差异,并确定测量爆炸下限的点火延迟时间。研究结果表明:实验工况下,液相的存在会降低粉尘云团的湍流动能、降低其扩散速度,并使粉尘云内部浓度更均匀。测量多相混合物爆炸下限时,三相混合物的最佳点火延迟时间早于气固两相混合物10~20 ms。  相似文献   

11.
阐述了液化石油气球罐的特点。对液化石油气球罐的泄漏危险性进行了分析,主要存在的泄漏危险有泄漏物质易燃易爆、易发生泄漏、受热易膨胀导致泄漏、泄漏气体易积聚、泄漏事故具有隐蔽性、泄漏物质具有毒害性。根据液化气泄漏危险性分析,提出了预防和控制液化石油气球罐泄漏危害的安全措施:加强设备质量管理,杜绝泄漏现象;合理设置球罐,降低泄漏风险;规范安全操作,减少泄漏量;防止泄漏气体积聚;设置防泄漏安全装置;及时发现泄漏;设置消防给水及灭火设施;妥善处理泄漏事故。  相似文献   

12.
基于计算流动动力学(CFD)方法,以Fluent软件为平台,以大连新港某球罐区为研究对象,建立真实尺寸的球罐内可燃气体泄漏扩散数值模拟模型,分析甲烷扩散规律及可燃气云尺度.提出采用可燃气云稳定状态时的水平方向长度Lmax、竖直方向高度Dmax作为尺度的衡量参数,用以评估可燃气云区域的大小.探讨初始压力、泄漏孔径、正风向风速对尺度参数Lmax和Dmax的影响规律,并对比可燃气体种类对尺度参数的影响.结果表明:甲烷以临界状态通过泄漏孔时,初始压力对Lmax和Dmax的影响可以忽略;Lmax和Dmax随泄漏孔径增加而线性增大,但随正风向风速增加而线性减小;相同泄漏扩散条件下,氢气泄漏引起的可燃气云范围最大,甲烷次之,丙烷最小.  相似文献   

13.
14.
振动环境下液化气罐内饱和液体状态变化规律研究   总被引:1,自引:1,他引:0  
液化气在储运过程中存在安全隐患,为分析在运输途中的液化气罐内部压力变化情况,建立液化气罐在受迫振动下的一维数学模型,分析运动过程中饱和液体和气罐的相对运动以及对罐内压力的影响.根据经验公式计算过热液中气泡的生长和消失,并用商业CFD软件CFX模拟在振动过程中罐内介质的状态变化过程,计算由于气泡的生长和消失导致的压力波动.根据这些数据进一步分析罐的振动频率和液体的填充量对汽化速率和压力波动的影响,并得出变化规律.  相似文献   

15.
危险化学品泄漏扩散研究探讨   总被引:5,自引:2,他引:5  
对危险化学品泄漏扩散的研究是事故应急救援的基础。针对近年来日益增多的危险化学品泄漏事故,本文从数学模型和计算机仿真模拟两方面系统评述了国内外危险化学品泄漏扩散方面的研究,其中数学模型研究主要分为“反求源强”模型和扩散模型两类,计算机仿真模拟主要分为静态离线仿真模拟和实时动态仿真模拟两类。在此基础上,提出了进一步研究的一般框架和研究的方向。  相似文献   

16.
为掌握综合管廊内天然气输气管道泄漏口朝向对气体扩散的影响,使用FLUENT软件对4种不同朝向的泄漏口泄漏过程进行3维数值模拟,对比分析不同工况下气体浓度分布。结果表明:泄漏形成的射流产生强烈气体掺混,降低泄漏口附近气体浓度梯度;随着距泄露孔距离的增加,气体受惯性力作用减弱,并在浮力作用下抬升。管廊纵截面气体浓度场可分为泄漏口附近的均匀区和距离泄漏口较远的分层区。在均匀区内,探测器高度上气体质量分数纵向分布呈阶梯状;距泄漏口较远距离(大于20 m),泄漏口朝向对探测器高度上气体浓度纵向分布影响较小。基于稳态气体分布控制方程,提出气体在分层区内纵向分布关系式。当泄漏口刚好位于2探测器中央(最不利工况)时,泄漏孔朝向为X+(管道距离壁面较远侧)的泄漏气体在喷出后与空气接触时间长,产生涡量更大,使气体在管廊纵向上蔓延速度降低,探测器响应时间相对较长。  相似文献   

17.
居室天然气泄漏扩散过程仿真研究   总被引:2,自引:1,他引:1  
随着我国城市环境保护的提高,城市燃料结构也在逐步改变。天然气作为一种清洁、高效的能源已经成为居民应用最广泛的燃料。随着天然气用户的不断增加,其事故次数也在不断上升。为了系统的研究居室内天然气泄漏扩散的过程和发展,预防居民家庭天然气火灾和爆炸事故以及发生事故后的应急提供依据。本文以普通的居民居室为研究对象,建立居室天然气泄漏扩散几何模型。并对室内天然气泄漏后的扩散状态进行仿真模拟,得到天然气泄漏后的室内扩散过程,以及在不同时间内存在爆炸极限的区域和达到爆炸极限的范围,并对爆炸后果进行了评估。结果显示:在设定条件下,泄漏发生后640 s,冰箱电源处达到爆炸下限,790 s时达到爆炸上限;其爆炸能量已达到使大型钢架结构破坏,大部分人员死亡的程度。泄漏1800 s后,可燃区域就扩散到厨房之外,存在于客厅之中了。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号