共查询到20条相似文献,搜索用时 0 毫秒
1.
土壤矿物和土壤微生物都是土壤环境的重要组成部分.土壤中存在的Cr(Ⅵ)还原菌在矿物上的吸附行为可能会影响土壤中Cr(Ⅵ)的还原及铬的迁移.研究选取土壤中典型矿物(磁铁矿)为研究对象,探讨了其对Cr(Ⅵ)还原菌QH-2的吸附行为.在试验过程中,测定不同pH值条件下磁铁矿对菌株的吸附量及Zeta电位.使用扫描电镜、傅立叶变换红外光谱仪对吸附菌株后的磁铁矿进行表征.结果表明:磁铁矿可以吸附菌株QH-2,且吸附后晶体结构没有改变;菌株同磁铁矿的吸附在接触1 h后基本达到稳定,且磁铁矿对菌株的最高吸附量能达到129 mg/g.随pH值变化(6~10),磁铁矿对菌株吸附量先上升后下降.傅立叶变换红外光谱图表明磁铁矿吸附菌株后,特征峰位置无明显变化.研究表明磁铁矿能有效地吸附菌株QH-2,且二者吸附以静电作用为主,不涉及价键变化. 相似文献
2.
构建离子交换膜化学反应器,研究其在无外加电压作用下去除饮用水中Cr(Ⅵ)的效果.结果表明,当原水Cr(Ⅵ)初始浓度为0.019 2 mmol/L,补偿溶液NaCl浓度为100 mmol/L,流量为2.5 mL/min时,给体池Cr(Ⅵ)分离去除率为86.2%.随着给体池共存离子浓度的增加,其对Cr(Ⅵ)交换竞争作用加强,给体池Cr(Ⅵ)分离去除率逐渐降低;在相同共存离子浓度条件下,3种共存离子对Cr(Ⅵ)分离效果的影响程度依次为SO42-、NO3-、Cl-.补偿溶液NaCl浓度由1mmol/L增加至100 mmoL/L时,Cr(Ⅵ)分离去除率基本不变,但是Donnan分离12 h后化学反应池Cr(Ⅵ)浓度由0.001 5 mmol/L增加至0.016 0 mmol/L.Cr2O72-离子交换过程可用一级反应动力学方程描述,离子交换反应速率常数为0.014 2 min-1.加入10 mmol/L共存离子Cl-、NO3-和SO42-后,离子交换反应速率常数分别降低至0.013 5min-1、0.010 5 min-1和0.008 9 min-1.Cr(Ⅵ)在化学反应池中浓缩富集,离子交换26 h后化学反应池Cr(Ⅵ)浓度为0.069 8 mmol/L,可通过投加硫酸亚铁还原剂和碱液将其去除. 相似文献
3.
利用聚乙烯醇-海藻酸钠-活性炭粉末制作固定化烟曲霉小球,并以其为吸附介质,在30℃、120 r/min的培养条件下,考察了不同初始pH值、葡萄糖质量浓度、NaCl质量浓度和Cr(Ⅵ)质量浓度时固定化烟曲霉小球对模拟废水中Cr(Ⅵ)的吸附效果.结果表明,固定化烟曲霉小球在中性偏酸环境中对Cr(Ⅵ)有更好的吸附效果,且吸附效率随葡萄糖初始添加量的增加呈增大趋势;NaCl在初始添加量较低时对Cr(Ⅵ)吸附效果影响不大,质量浓度较高时,则会对Cr(Ⅵ)的吸附效果产生显著影响;固定化烟曲霉小球对Cr(Ⅵ)的吸附效率随Cr(Ⅵ)质量浓度的增加呈递减趋势,而吸附量随Cr(Ⅵ)质量浓度的增加呈递增趋势. 相似文献
4.
研究吸附时间、pH值、温度、Cr(Ⅵ)初始浓度等因素对活性啤酒酵母吸附Cr(Ⅵ)的影响及最佳条件.采用制备的啤酒酵母菌体吸附剂在摇床(145 r/min)中对Cr(Ⅵ)进行吸附试验,当吸附时间分别为5 min、10 min、20 min、30 min、60 min、120 min、180 min、240 min和300 min时,Cr(Ⅵ)去除率随吸附时间的增加而增加并趋于稳定;当吸附4 h时,去除率达到最大值94.33%,而当吸附1 h时,去除率可达到最大去除率的94.67%.当溶液pH值分别为0.5、1、2、3、4、5、6、7、8、9和10时,33 ℃下去除率随着溶液pH值的增加先增大后减小;当pH=2时吸附效果最好,去除率达到99.31%.吸附温度为25 ℃、33 ℃和40 ℃时,去除率随着温度的升高而增加,但温度过高会使啤酒酵母失活且能耗较大,而常温吸附即可达到较高的去除率(78.19%).当Cr(Ⅵ)初始质量浓度分别为15 mg/L、20 mg/L、25 mg/L、30 mg/L、35 mg/L和40 mg/L时,去除率总体上随着Cr(Ⅵ)质量浓度的增加而减小.本研究可为含Cr(Ⅵ)废水的生物吸附处理提供指导. 相似文献
5.
以开封市西区污水处理厂剩余污泥为原料,在酸性条件下添加十六烷基三甲基溴化铵(CTAB)制备了改性污泥吸附剂。通过静态吸附实验考察了污泥改性前后对Cr(VI)废水的吸附性能。结果表明,最佳改性条件为在0.6 mg/L的HCl溶液中,按液固比为20∶1加入污泥,控制温度95℃以上添加1%的CTAB,反应5 h;SEM,BET分析表明,污泥改性后其表面以及孔洞内变得更加粗糙和疏松,污泥BET比表面积增大了2.3倍,总孔容增大了1.7倍,红外光谱表明CTAB基团嫁接到污泥结构中;当Cr(VI)初始质量浓度20 mg/L、最佳pH为2.0、反应温度25℃,改性吸附剂投加量为8.0 g/L、吸附0.5 h后,Cr(VI)的去除率可达到91.3%,去除率比改性前增大了53.5%。 相似文献
6.
目前,生物材料处理含铀废水已成为研究热点,为此,对硫酸盐还原菌(SRB)产生的生物材料的性能进行研究。通过接种硫酸盐还原菌制备了生物硫铁复合材料,探讨了p H值、U(VI)初始质量浓度和温度对生物硫铁去除U(VI)的影响,对比了硫铁、活性生物硫铁和硫酸盐还原菌(SRB)对U(VI)的去除效果。采用环境扫描电镜(SEM)、傅里叶红外光谱仪(FTIR)、高分辨率透射电镜(TEM)-X射线能谱(EDS)分析了生物硫铁结构特性及其对U(VI)的去除机理。结果表明,当初始p H值为7.5、温度为35℃,U(VI)初始质量浓度为7.2 mg/L、生物硫铁投加量为0.1 g时对U(VI)的去除效果最好,12 h完成反应,去除率达99.5%。活性生物硫铁除U(VI)效果优于硫铁和SRB,表明活性生物硫铁中硫铁化合物和SRB同时对U(VI)产生吸附与还原作用,具有速度快、效率高等优点。生物硫铁中的硫铁化合物为无定形态和不规则角柱体,角柱体厚度为20~150 nm,长度为200 nm~1μm。TEM-EDS分析表明,生物硫铁除U(VI)机理有胞外吸附与胞内积累,铀占总元素的质量分数为9.70%,特征峰明显,生物硫铁具有良好的U(VI)去除能力。FTIR分析表明,与U(VI)作用的基团主要有羟基、羧基、磷酸基和C=O、C—N、P—O。 相似文献
7.
采用胁迫培养的方式,结合扫描电镜(SEM)和傅里叶变换红外分析(FTIR)研究了Pb2+对生物膜胞外聚合物(EPS)的影响,包括Pb2+对蛋白质和多糖产生量及比值(PN/PS)的影响、对EPS中Pb2+质量比的影响、对EPS基团和微观形态的影响。结果表明,Pb2+质量浓度为10 mg/L时,对蛋白质和多糖的产生有抑制作用;Pb2+质量浓度大于等于20 mg/L时,对蛋白质和多糖的产生有促进作用。PN/PS随Pb2+质量浓度升高而增大,在Pb2+质量浓度为40 mg/L时略有下降,说明Pb2+更有利于促进蛋白质的产生。生物膜中Pb2+质量比随Pb2+质量浓度升高而增加,证明Pb2+通过与蛋白质和多糖结合在生物膜上积累。FTIR分析表明,Pb2+的加入会导致羧基基团的振动减弱,羟基出现变形振动、伸缩振动等;SEM图像显示,加入Pb2+后,出现含Pb的白色沉淀物,阻塞了传质通道,使EPS孔洞和通道数目减少。 相似文献
8.
采用铝盐浸渍法制备改性活性炭。研究了铝盐种类、浸渍液浓度和不同吸附条件对Cr(Ⅵ)吸附性能的影响。结果表明:采用0. 1 mol/L Al_2(SO_4)_3浸渍法制得的改性PAC吸附效果最好,Cr(Ⅵ)的吸附量由0. 75 mg/g提高到4. 86 mg/g。当温度为30℃时,Al-PAC的最佳吸附条件为:投加量0. 2 g(每100m L),p H为4,吸附时间30 min,溶液中Cr(Ⅵ)浓度由10 mg/L降至0. 45 mg/L以下,低于排放限值。吸附动力学符合拟二级动力学方程,吸附等温线符合Freundlich方程,吸附过程为以离子交换为主要机制的化学吸附。 相似文献
9.
采用阳离子交换树脂法对除铬(Ⅵ)优势菌(Brevibacillussp.)株的胞外聚合物(EPS)的提取过程进行优化,以得到EPS的最佳提取条件。综合考察树脂量、振摇频率、提取时间3个主要因素对优势菌胞外聚合物的影响。结合阳离子交换树脂对EPS的交换吸附机理,对3个提取条件下,EPS及其成分的提取量的变化趋势进行分析。结果表明,菌株经28℃、150 r/min、24 h培养后,确定阳离子交换树脂法提取优势菌EPS的最佳条件为树脂量30 g,振摇频率140 r/min,提取时间9 h,此条件下的EPS提取量为40.84μg/mL。 相似文献
10.
分别采用热提法与蒸汽法对好氧污泥胞外聚合物(Extracellular Polymeric Substances,EPS)进行了提取,对两种方法提取效果进行比较,并探讨了EPS投加量、吸附时间、温度、pH值等对吸附的影响。结果表明:采用热提法提取的EPS中蛋白质、多糖与核酸质量浓度分别为2.111 g/L、0.235 3 g/L、0.111 0 mg/L,蛋白质与多糖质量浓度比值为8.971;而采用蒸汽法提取的EPS中蛋白质、多糖与核酸质量浓度分别为2.828 g/L、0.744 4 g/L、0.247 9 mg/L,蛋白质与多糖质量浓度比值为3.800。pH值对染色剂玫瑰红B的吸附过程影响显著,适宜pH=6。随温度增加,吸附量增大,在50℃时达到最大。染色剂玫瑰红B在EPS上的吸附量随吸附时间增加而增大,初始进行得很快,在720min时达到吸附平衡。当EPS初始质量浓度为800 mg/L时,其饱和吸附量为12.61 mg/g。准二级动力方程很好地拟合了各温度的吸附动力学数据且R20.987。分别采用Langmuir与Freundlich等温吸附模型进行热力学拟合,Langmuir等温模型在各温度下的模拟方程决定系数均在0.7以下;而Freundlich等温模型各温度的模拟方程决定系数在0.81~0.98,相关性明显好于Langmuir吸附等温模型,因此吸附较符合Freundlich等温模型。 相似文献
11.
12.
以柚子皮为原料,经乙醇处理,得到改性柚皮吸附剂,并将其用于对水溶液中Cr(Ⅵ)的吸附,研究了吸附剂用量、温度、水样初始p H值、Cr(Ⅵ)初始质量浓度、吸附时间等对水溶液中Cr(Ⅵ)吸附效果的影响。结果表明,各因素中p H值对改性柚皮吸附Cr(Ⅵ)的影响较大。对初始质量浓度为20 mg/L的Cr(Ⅵ)溶液,改性柚皮投加量为20 g/L、温度为25℃、水样初始p H=1时,吸附420 min后,Cr(Ⅵ)的去除率达99%以上。Freundlich吸附等温模型和二级吸附动力学模型可以很好地对改性柚皮的吸附过程进行线性拟合,决定系数R2分别为0.975 1和0.996 6。 相似文献
13.
低浓度含铀废水中铀的高效去除是铀矿冶安全生产过程中亟待解决的问题。生物吸附法是处理较低浓度重金属废水的高效廉价的方法之一。采用生物炭负载聚磷菌,制备了一种新型吸附剂,通过对比分析普通生物炭与负载聚磷菌生物炭对水中U(VI)的去除特性,结合BET、SEM及XPS等检测手段,考察聚磷菌对生物炭去除水中U(VI)的协同作用,探究低浓度铀废水处理新方法。结果表明,通过负载聚磷菌,生物炭能够快速降低水中U(VI)的浓度,去除率可达99.86%。BET及SEM表征手段表明,聚磷菌被固定在生物炭表面,负载聚磷菌的生物炭比表面积大大减小,但对铀的去除率反而增加。结合XPS结果可知,吸附后沉淀产物为四价铀和六价铀的混合物,表明聚磷菌对水中铀进行了还原、微沉淀,具有协同生物炭除铀作用。吸附动力学试验表明,该吸附过程符合准二级动力学模型;Freundlich吸附等温线模型能更好地描述吸附剂对铀的吸附行为。 相似文献
14.
以自制TiO2为光催化剂,在紫外光和可见光照射下,研究甲基橙(MO)-Cr(Ⅵ)复合体系的光催化反应.讨论了复合体系MO和Cr(Ⅵ)的质量配比、体系pH值、入射光波长、TiO2用量、焙烧温度以及改性TiO2对MO-Cr(Ⅵ)复合体系光催化的影响.结果表明:复合体系光催化受MO-Cr(Ⅵ)质量配比、入射光波长、体系pH值和TiO2焙烧温度影响较大.Cr(Ⅵ)-MO质量配比在2/3~2/5时二者光催化协同作用效果最好.复合体系下MO和Cr(Ⅵ)的光催化效果比单一体系有较大提高.可见光下,单一体系基本无反应,而复合体系可以顺利进行.体系pH=1,40 mg/L MO和20 mg/L Cr(Ⅵ)组成的50 mL混合液,采用80 mg (1.6g/L) 550℃焙烧的TiO2,λ≥420 nm可见光催化下,MO 40 min完全脱色,Cr(Ⅵ) 70 min完全被光催化还原. 相似文献
15.
实验研究了工业废弃物改性粉煤灰对Cr(Ⅵ)吸附的影响因素,讨论了pH值、浓度、温度及时间对吸附量的影响。讨论了反应机理,计算反应热力学参数(焓、自由能、熵)。实验结果表明,当Cr(Ⅵ)初始质量浓度为10 mg/L,反应温度303 K,pH=1时,吸附量最大为0.47 mg/g。吸附过程符合兰格缪尔等温吸附。吸附过程为自发进行的放热反应。反应温度为303 K时,反应过程的焓值为-3.529 kJ/mol,自由能-4.664kJ/mol,熵3.746 J/(mol.K)。反应动力学过程表明反应符合准二级动力学反应。 相似文献
16.
17.
污泥热解残渣对废水中Cr(VI)去除作用的研究 总被引:1,自引:0,他引:1
为探索污泥热解残渣的资源化利用途径,研究污泥热解残渣直接用作吸附剂去除废水中Cr(VI)的可行性,分析热解温度、时间以及吸附时间、溶液pH值和吸附剂用量等因素对污泥残渣吸附性能的影响.结果表明,在700 ℃下热解1.0 h的污泥残渣的吸附性能最佳,吸附过程可以用准二级反应动力学方程描述;污泥残渣对Cr(VI)的吸附受多种过程(如化学吸附、颗粒内扩散等)反应速度的影响;Langmuir模型和Freundlich模型均能很好地对试验数据进行拟合,相对而言,吸附行为更符合Langmuir模型;当吸附时间为24.0 h,初始溶液pH=4.0,吸附剂质量浓度为20 g/L时,污泥残渣对Cr(VI)的最大吸附质量比qmax为13.87 mg/g.研究表明,将污泥热解残渣作为廉价吸附剂处理含Cr(VI)废水有一定的应用前景. 相似文献
18.
拟通过筛选出高效还原Cr(Ⅵ)的菌株来修复铬污染土壤,从重庆废弃化工厂铬污染土壤中分离得到一株高效还原菌株,对该菌进行形态和生理生化特征研究,并结合分子生物学进行测序分析,同时对该菌在不同条件下还原Cr(Ⅵ)的能力进行检测,探讨了pH值、接种量、初始Cr(Ⅵ)质量浓度及温度对Cr(Ⅵ)还原的影响.结果表明,该菌株为革兰氏阳性杆菌,命名为NO.1.经形态和生理生化特征及16S rDNA序列比对分析,鉴定为蜡样芽孢杆菌(Bacillus cereus)(相似度为99%).该菌株具有较强的还原Cr(Ⅵ)的能力,在pH=8.0、接种量50%(体积分数)及30℃条件下,100 mg/L的Cr(Ⅵ)在处理3d后可基本被还原.研究表明,该细菌有望用于铬污染土壤的修复. 相似文献
19.
碳化温度对稻壳生物炭的影响及其对Cr(Ⅵ)的吸附性能 总被引:1,自引:0,他引:1
以稻壳为原料,在不同的温度(300,500和700℃)下采用限氧碳化法制备了生物炭,并利用扫描电镜(SEM)和红外光谱(FTIR)表征了生物炭的结构和性质,同时考察了pH值对生物炭吸附的影响,初步探讨了吸附机理。结果表明,制备的生物炭官能团种类和总量相近,均含有烷基、芳香基及一些含氧官能团,随着碳化温度的升高芳香族化合物增加,芳香化程度增强。试验条件下稻壳生物炭(RH700)对Cr(Ⅵ)的饱和吸附量达到16.68 mg/g,降低pH值有利于对Cr(Ⅵ)的吸附。稻壳生物炭等温吸附曲线更符合Langmuir模型,对吸附过程中焓(△H)、熵(△S)和吉布斯自由能(△G)的计算表明,稻壳生物炭对Cr(Ⅵ)的吸附是自发的吸热反应,其吸附行为更符合伪二级动力学模型,拟合的qe值与实测值相差小于0.38 mg/g。颗粒内扩散表明膜扩散和颗粒内扩散共同控制着吸附过程。 相似文献
20.
胞外聚合物蓄磷能力及与生物除磷的关系 总被引:2,自引:0,他引:2
为探明胞外聚合物(EPS)在生物除磷过程中的作用,采用人工模拟城市污水,对不同污泥龄(SRT)下厌氧/好氧(A/O)交替运行的SBR生物除磷系统的除磷效果进行监测,并对单位质量的活性污泥中所包含的总磷质量、EPS中吸附的总磷质量以及细胞吸收的总磷质量进行测定.结果表明,当SRT小于48 d时,A/O-SBR城市污水生物除磷系统均能取得良好的除磷效果,连续监测出水总磷质量浓度均小于0.5 mg/L,达到《城镇污水处理厂排放标准》的一级标准.EPS具有一定的蓄磷能力,单位质量的活性污泥中EPS含磷量(简称EPS含磷量)不超过10 mgP/gVSS,而同质量的活性污泥中的细胞含磷量(简称细胞含磷量)最高可达38 mgP/gVSS.EPS含磷量不随SRT发生变化,SRT在12~48 d时,EPS含磷量约为10 mgP/gVSS;而细胞含磷量会随SRT发生变化,SRT在12~48 d时,细胞含磷量在20~38 mgP/gVSS之间变化.城市污水处理厂的活性污泥中细胞含磷量始终大于EPS含磷量,水中的磷酸盐主要以聚磷颗粒的形式储存于细胞内.在一个厌氧/好氧交替的反应周期内,EPS含磷量并不是一直保持在10mgP/gVSS,而是出现波浪形变化趋势,有时甚至可高达20 mgP/gVSS.这种波动能够调节聚磷菌(PAO)胞外磷酸盐浓度,有利手聚磷菌抵抗高磷酸盐负荷.但在反应结束时EPS含磷量又会恢复到反应开始前的水平.因此,EPS在生物除磷过程中主要起缓冲作用,是胞内聚磷合成的中转站. 相似文献